Math 53 Discussion

No quiz next week (Veteran's day), but HW due Weds
Practice Problems: 16.3, fundamental theorem of line integrals, conservative vector fields

1) Determine if \vec{F} is conservative.
(a) $\vec{F}(x, y)=e^{x} \cos y \hat{i}+e^{x} \sin y \hat{j}$.
(b) $\vec{F}(x, y)=\left(\ln y+2 x y^{3}\right) \hat{i}+\left(3 x^{2} y^{2}+x / y\right) \hat{j}$.
2) For the conservative \vec{F} above, find its scalar potential function f, i.e. $\vec{F}=\nabla f$.
3) (a) Find a function f such that $\vec{F}=\nabla f$, where $\vec{F}(x, y)=x y^{2} \hat{i}+x^{2} y \hat{j}$.
(b) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve $C: \vec{r}(t)=\langle t+\sin \pi t / 2, t+\cos \pi t / 2\rangle$ for $0 \leq t \leq 1$.
4) Explain why the following holds: Suppose a vector field $\vec{F}(x, y)$ is perpendicular to the tangent vector $\vec{r}^{\prime}(t)$ to a curve C, at each point $(x(t), y(t))$ on the curve. Then $\int_{C} \vec{F} \cdot d \vec{r}=0$.

Extra line integral practice (won't go over in class, but answers below.)

5) Evaluate $\int_{C}(x y+\ln x) d y$ where C is the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$.
6) The position of an object with mass m at time t is $\vec{r}(t)=a t^{2} \hat{i}+b t^{3} \hat{j}$, for $0 \leq t \leq 1$. (a) Find the force acting on the object at time t. (b) What is the work done by the force during $0 \leq t \leq 1$? .

Answers: 1) No, Yes. 2) $\left.x \ln y+x^{2} y^{3}+C .3\right)$ a) $x^{2} y^{2} / 2$, b) 2. 4) dot product in integral is zero along C. 5) $464 / 5+9 \ln 3$. 6) a) Use $\vec{F}=m \vec{a}$ to get $2 m a \hat{i}+6 b m t \hat{j}$, b) $m\left(2 a^{2}+\frac{9}{2} b^{2}\right)$.

