Math 53 Discussion

Practice Problems: 16.1–16.2, vector fields, line integrals

1) Sketch the vector field $\overrightarrow{F}(x,y) = x^2 \hat{i}$.

2) Sketch the contour plot and gradient vector field of f(x, y) = xy. For example, you could start by sketching the contours f(x, y) = 1 and f(x, y) = 2.

3) Find $\int_C z \, ds$ where C is the helix $(\cos t, \sin t, t)$ for $0 \le t \le \pi$.

4) Find $\int_C xy \, dx + (x-y) \, dy$, where C = line segments from (0,0) to (2,0) and (2,0) to (3,2).

5) Evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F} = x^2 y^3 \hat{i} - y \sqrt{x} \hat{j}$ and $\overrightarrow{r}(t) = t^2 \hat{i} - t^3 \hat{j}$ for $0 \le t \le 1$.

1) arrows point right only, increasing in length with |x|. 2) vector field arrows perpendicular to contour lines. 3) $\frac{\pi^2 \sqrt{2}}{2}$. 4) $\frac{17}{3}$. 5) $-\frac{59}{105}$.