Math 53 Discussion

Practice Problems: 16.1-16.2, vector fields, line integrals

1) Sketch the vector field $\vec{F}(x, y)=x^{2} \hat{i}$.
2) Sketch the contour plot and gradient vector field of $f(x, y)=x y$. For example, you could start by sketching the contours $f(x, y)=1$ and $f(x, y)=2$.
3) Find $\int_{C} z d s$ where C is the helix $(\cos t, \sin t, t)$ for $0 \leq t \leq \pi$.
4) Find $\int_{C} x y d x+(x-y) d y$, where $C=$ line segments from $(0,0)$ to $(2,0)$ and $(2,0)$ to $(3,2)$.
5) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=x^{2} y^{3} \hat{i}-y \sqrt{x} \hat{j}$ and $\vec{r}(t)=t^{2} \hat{i}-t^{3} \hat{j}$ for $0 \leq t \leq 1$.
6) arrows point right only, increasing in length with $|x| .2)$ vector field arrows perpendicular to contour lines. 3) $\frac{\pi^{2} \sqrt{2}}{2}$. 4) $\frac{17}{3}$. 5) $-\frac{59}{105}$.
