Math 53 Discussion

Practice Problems: 15.7-15.8, applications of triple integrals, cylindrical coordinates

1) Find the mass and set up the x-coordinate of the center of mass of the solid E with constant density function $\rho=2$, where:
E lies under the plane $1+x+y$ and above the region in the $x y$-plane bounded by the curves $y=\sqrt{x}, y=0$ and $x=1$.
2) a) Find the volume of the region E bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=36-3 x^{2}-3 y^{2}$.
b) Set up the integrals to find the centroid of E (the center of mass in the case where density is constant.)
3) Find the moments of inertia of a cube of constant density k and side length L, if one vertex is located at the origin and three edges lie along the coordinate axes.
4) $m=79 / 30, \bar{x}=\frac{1}{m} \int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{0}^{1+x+y} 2 x d z d y d x$
5) $162 \pi, \bar{x}, \bar{y}$ should be 0 by symmetry. $\bar{z}=\frac{1}{162 \pi} \int_{0}^{2 \pi} \int_{0}^{3} \int_{r^{2}}^{36-3 r^{2}} z r d z d r d \theta$.
6) $I_{x}=I_{y}=I_{z}=\frac{2 k}{3} L^{5}$
