Math 53 Discussion: Review problems for Midterm 1

1) Find the area of the the region lying inside both $r=2 \sin \theta$ and $r=\sin \theta+\cos \theta$.
2) Find the length of the curve $x(t)=3 t^{2}, y(t)=2 t^{3}$ for $0 \leq t \leq 2$.
3) a) Find a vector perpendicular to the plane through the points $A(1,0,0), B(2,0,-1)$ and $C(1,4,3)$. b) Find the area of the triangle $A B C$.
4) Find an equation of the plane through $(3,-1,1),(4,0,2)$ and $(6,3,1)$.
5) A surface consists of all points P such that the distance from P to the plane $y=1$ is twice the distance from P to the point $(0,-1,0)$. Find the equation for the surface and identify.

6) Find the point where the line $\vec{r}(t)=\langle 2-t, 1+3 t, 4 t\rangle$ intersects the plane $2 x-y+z=2$.
7) A particle moves with position function $\vec{r}(t)=t \ln t \hat{\mathbf{i}}+t \hat{\mathbf{j}}+e^{-t} \hat{\mathbf{k}}$. Find the velocity, speed and acceleration of the particle.
8) An athlete throws a shot at an angle of 45° to the horizontal at an initial speed of $43 \mathrm{ft} / \mathrm{s}$. The ball leaves his hand 7 ft above the ground. Assuming acceleration comes from gravity only, find the position vector describing the ball's trajectory.
9) Question 49 from Chapter 14 review of the textbook (reading a contour plot of hurricane wind speed.)
10) Use polar coordinates to find the limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-x^{2}-y^{2}}-1}{x^{2}+y^{2}}$.
11) Find the equation of the normal line and tangent plane to the surface $z=3 x^{2}-y^{2}+2 x$ at $(1,-2,1)$.
12) Find the linear approximation of $f(x, y, z)=x^{3} \sqrt{y^{2}+z^{2}}$ at $(2,3,4)$.
13) Use the Chain Rule to find $\frac{d u}{d p}$ where $u(x, y)=x^{2} y^{3}, x(p)=p+3 p^{2}, y(p)=p e^{p}$.
14) Find the directional derivative of $f(x, y)=x^{2} e^{-y}$ in the direction towards $(2,-3)$ from the point $(-2,0)$.
15) Find the absolute maximum and minima of $f(x, y)=4 x y^{2}-x^{2} y^{2}-x y^{3}$ on D, the closed triangular region with vertices at $(0,0),(0,6)$ and $(6,0)$.

Answers: 1) $\left.\left.\left.\frac{1}{2}(\pi-1), 2\right) 2(5 \sqrt{5}-1), 3\right)\langle 4,-3,4\rangle, \frac{\sqrt{41}}{2}, 4\right)-4 x+3 y+z=-14$, 5) $4 x^{2}+3 y^{2}+10 y+4 z^{2}+3=0$, ellipsoid. 6) $(1,4,4)$. 7) $\vec{r}^{\prime}(t)=(1+\ln t) \hat{\mathbf{i}}+\hat{\mathbf{j}}-e^{-t} \hat{\mathbf{k}}$, $\left.\left.|\vec{v}(t)|=\sqrt{(1+\ln t)^{2}+1+e^{-2 t}}, \vec{a}(t)=\frac{1}{t} \hat{\mathbf{i}}+e^{-t} \hat{\mathbf{k}}, 8\right) \quad \vec{r}(t)=\frac{43}{\sqrt{2}} t \hat{\mathbf{i}}+\left(\frac{43}{\sqrt{2}} t-\frac{1}{2} g t^{2}+7\right) \hat{\mathbf{j}}, 9\right)$ $\left.\approx \frac{5}{8}, 10\right)-1$. 11) plane: $z=8 x+4 y+1$, normal line: $\left.x=1+8 t, y=-2+4 t, z=1-t, 12\right)$ $\left.\left.f(x, y, z) \approx 60 x+(24 / 5) y+(32 / 5) z-120,13) 2 x y^{3}(1+6 p)+3 x^{2} y^{2}\left(e^{p}+p e^{p}\right), 14\right)-\frac{4}{5}, 15\right) \max$ at $(1,2)$ and min at $(2,4)$

