
Math 53 Discussion: Review for Midterm 2

Double integrals. §15.1 – 15.6

• Cartesian and polar coordinates. §15.1–15.4.

– Analogous to an integral in 1D being the area under a curve, we can think of integrals in 2D as the
volume under a surface. Integration can be done in the order dx dy or dy dx. E.g. if the integral is in
the order dx dy over a region R, take the shadow of R on the y-axis to get the y-bounds, then see how
x varies at each such y.

– In polars, the area element is dA = r dr dθ.

• Applications – mass, center of mass, moment of inertia, average value of a function. §15.5

– Mass of lamina (infinitely thin sheet of paper) occupying 2D region R, with density ρ: integrate density
over the region R to get mass equals m =

∫ ∫
R ρ dA.

– Center of mass (x, y) is obtained by finding the average x and y coordinates, weighted by the density.

x =
1
m

∫ ∫
R

xρ dA, y =
1
m

∫ ∫
R

yρ dA

– Moment of inertia: rotating lamina about x-axis (Ix), y-axis (Iy), and origin (I0) involves integrating
the (distance)2 from the axis of rotation, over the lamina R of density ρ:

Ix =
∫ ∫

R
y2ρ(x, y) dA, Iy =

∫ ∫
R

x2ρ(x, y) dA, I0 =
∫

R
(x2 + y2)ρ(x, y) dA

– Average value of a function f over region R is 1
area(R)

∫ ∫
R f dA.

• Surface area. §15.6. Surface area of a surface obtained as a graph z = f(x, y) over region R in the xy-plane:∫ ∫
R

√
fx

2 + fy
2 + 1 dx dy

Triple integrals. §15.7–15.9

• Triple integrals involve integrating a function f over a 3D solid. We can think of this as finding the mass of
such a solid with density f . (But a general triple integral can be negative.)

• Method: e.g. suppose the area element is dx dy dz, and we want to integrate over a solid E. First find the
shadow of E on the yz-plane (this will be the slice parallel to the yz-plane where E is “widest” and not
necessarily the same as setting x = 0 in the equation for E). Express the region for this shadow as you would
a double integral to get the y and z bounds. Then at each point (y, z) in this region, see how x varies as a
function of y and z.

• Cylindrical coordinates (r, θ, z): these are 2D polar coordinates along with the third coordinate being z. The
volume element is dV = r dr dθ dz.

• Spherical coordinates (ρ, θ, φ): here ρ is the distance of the point to the origin, θ is the same as in cylindrical,
i.e. the angle from the positive x-axis when projected to the xy-plane, and φ is the angle from the positive
z-axis. Note that φ takes values between 0 and π.

• Applications: analogous to the formulas above. Now density is a function of three variables, and for average
value of a function we divide by volume instead of area.
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Change of variables using the Jacobian. §15.10

• Allows us to evaluate integrals by changing variables so the domain is nicer. Examples include polar coordi-
nates in 2D, and spherical and cylindrical coordinates in 3D.

• Method in 2D (3D is similar):

1. Change from region R in xy-plane to region S in uv-plane by x = x(u, v), y = y(u, v). E.g. see where
the boundaries of R map to by finding equations describing them in x and y, then plugging in x(u, v)
and y(u, v) to find the corresponding equations in u and v of the boundaries for S.

2. The area element dA becomes
∣∣∣∂(x,y)
∂(u,v)

∣∣∣ du dv. (One way to remember what goes on top and on bottom
is to think of ∂(u, v) as “canceling” du dv to give dx dy. Mathematically this isn’t exactly what’s
happening, but it’s a way to remember the order.)

3. Here ∂(x,y)
∂(u,v) = det

(
xu xv

yu yv

)
is called the Jacobian of the transformation. So the first order partials of

x go in the first row and of y go in the second row. (We have a 3 × 3 matrix in 3D.) We take the
absolute value of this determinant when evaluating the integral.

4. Evaluate the double integral now in terms of u and v.

• If we’re given u and v in terms of x and y there are two ways to find ∂(x,y)
∂(u,v) :

1. Solve for x and y as functions of u and v and find the partial derivatives directly.
2. Find ∂(u,v)

∂(x,y) and then take the reciprocal to get what we want, i.e. ∂(x,y)
∂(u,v) . In other words,

1
∂(u, v)
∂(x, y)

=
∂(x, y)
∂(u, v)

• To summarize:

1. Find the new region S in the uv-plane and the new bounds describing S.

2. The area element becomes
∣∣∣∂(x,y)
∂(u,v)

∣∣∣ du dv.

3. Write the function we’re integrating, f(x, y), in terms of u and v as f(x(u, v), y(u, v)).
4. Evaluate the integral now written in terms of u and v, using the usual tools for multiple integrals.

Vector fields, line integrals. §16.1–16.2

• A vector field is a function on the plane or in three-dimensional space. It’s a function which assigns a vector
at each point in its domain. For example,

−→
F (x, y, z) could describe the direction the wind is traveling at

(x, y, z).

• Line integrals allow us to integrate a scalar function or vector function over a curve C, by parametrizing the
curve and reducing to an integral in one variable.

• Integrating a scalar function (e.g. if C describes a thin wire with linear density f(x, y, z) then we integrate
f over C to get the mass of the wire): ∫

C
f ds

where s is arc length.

• Integrating a vector field
−→
F to get work done (dot product with d−→r = 〈dx, dy〉) or flux through the curve

(dot product with −→n ds = 〈dy,−dx〉 where −→n is the unit normal and ds is infinitesimal arc length):∫
C

−→
F · d−→r , or for flux:

∫
C

−→
F · −→n ds
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• Method:

– Parametrize the curve C as −→r (t) = 〈x(t), y(t), z(t)〉, or only in x and y if it’s a planar curve.

– Determine what type of integral you’re doing: if you’re integrating a scalar then take the magnitude
|r′(t)| to get

ds = |r′(t)| dt

If you’re integrating a vector field, then take the dot product of
−→
F with

d−→r = −→r ′(t)dt, or −→n ds =
〈
y′(t),−x′(t)

〉
dt

– Plug everything into the integral to get an integral in t, which can then be evaluated.

The fundamental theorem of line integrals. §16.3

• For conservative vector fields
−→
F = ∇f only we have that line integrals are independent of path:∫

C

−→
F · d−→r =

∫
C
∇f · d−→r = f(−→r (b))− f(−→r (a))

• In particular, if we have a closed curve, meaning −→r (a) = −→r (b), the line integral is zero.

• If
−→
F = 〈P,Q〉 and ∂Q/∂x = ∂P/∂y on a simply connected region, then

−→
F is conservative on that region.

This is a special case of checking that curl(
−→
F ) =

−→
0 on a simply connected region.

Green’s theorem. §16.4

• C is a simple closed, positively oriented curve, enclosing region D, and
−→
F = 〈P,Q〉 has continuous partial

derivatives on an open region containing D then:∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫
C

−→
F · d−→r =

∫
C

Pdx + Qdy

Curl and divergence. §16.5

• Let
−→
F = 〈P,Q,R〉. Then

curl(
−→
F ) = ∇×

−→
F = det

 î ĵ k̂
∂/∂x ∂/∂y ∂/∂z

P Q R


• Thinking again of

−→
F as fluid flow, curl(

−→
F ) points in the direction of the axis of rotation of the fluid. A larger

magnitude for curl means faster rotation. curl(
−→
F ) =

−→
0 means

−→
F is irrotational.

•
div(

−→
F ) = ∇ ·

−→
F =

∂P

∂x
+

∂Q

∂y
+

∂R

∂z

• Thinking of
−→
F as describing fluid flow, divergence of

−→
F at a point measures the amount of fluid flowing in

or out at that point. Positive divergence means the net flow is outwards (source) and negative divergence
means the net flow is inwards (sink). div(

−→
F ) = 0 means

−→
F is incompressible.
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Parametrized surfaces. §16.6

• Method:

1. Parametrize S as −→r (u, v) = 〈x(u, v), y(u, v), z(u, v)〉, find the bounds for u, v. Here are some examples.

Graph of a function z = f(x, y): x and y are the parameters.
−→r (x, y) = 〈x, y, f(x, y)〉

The domain will be the “shadow” of the surface in the xy-plane.

A sphere of radius a: φ and θ are the parameters.
−→r (φ, θ) = 〈a sinφ cos θ, a sinφ sin θ, a cos φ〉

You determine the bounds on φ and θ depending on what portion of the surface of the sphere you want.

A cylinder of radius a along z-axis: the height z and the polar angle θ are the parameters.
−→r (θ, z) = 〈a cos θ, a sin θ, z〉

2. Compute −→r u × −→r v. Then dS = |−→r u × −→r v| du dv. Whatever your parameters u and v are, you only
multiply the magnitude of the cross product by du dv. If your parameters are r and θ, you will only
multiply by dr dθ. However, if your parameters are x and y and you get a double integral involving
dx dy and then want to convert into polars, you will need to use r dr dθ.

Graph of a function:
−→r x ×−→r y = 〈−fx,−fy, 1〉

dS =
√

f2
x + f2

y + 1

A sphere of radius a:

−→r φ ×−→r θ =
〈
a2 sin2 φ cos θ, a2 sin2 φ sin θ, a2 sinφ cos φ

〉
dS = a2 sinφ dφ dθ

A cylinder of radius a along z-axis:
−→r θ ×−→r z = 〈a cos θ, a sin θ, 0〉

dS = a dz dθ

• Surface area from §15.6 is a special case of this. In that section, we were dealing only with surfaces that were
graphs of functions (not all surfaces are graphs of functions, e.g. a sphere). The surface area is∫ ∫

S
1 dS =

∫ ∫
D

√
f2

x + f2
y + 1 dx dy

where S is the surface and D is the domain in x and y.

• The Jacobian from §15.10 is also a special case of this. There our surface S was in the flat plane, so the
parametrization was of the form −→r (u, v) = 〈x(u, v), y(u, v), 0〉. The area element dS = |−→r u × −→r v| du dv is
just the Jacobian ∂(x,y)

∂(u,v) .

det

 î ĵ k̂
xu yu 0
xv yv 0

 = 〈0, 0, xuyv − xvyu〉

which has magnitude |xuyv − xvyu| =
∣∣∣∂(x,y)
∂(u,v)

∣∣∣.
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