
Math 53 Discussion: Review for Final

Parametrized surfaces, Surface integrals. §16.6–16.7

• We have seen two types of surface integrals. We can integrate a scalar function or we can integrate a vector
function.

• Method:

1. Parametrize S as −→r (u, v) = 〈x(u, v), y(u, v), z(u, v)〉, find the bounds for u, v. Here are some examples.

Graph of a function z = f(x, y): x and y are the parameters.

−→r (x, y) = 〈x, y, f(x, y)〉

The domain will be the “shadow” of the surface in the xy-plane.

A sphere of radius a: φ and θ are the parameters.

−→r (φ, θ) = 〈a sinφ cos θ, a sinφ sin θ, a cos φ〉

You determine the bounds on φ and θ depending on what portion of the surface of the sphere you want.

A cylinder of radius a along z-axis: the height z and the polar angle θ are the parameters.

−→r (θ, z) = 〈a cos θ, a sin θ, z〉

2. Compute −→r u ×−→r v. Then −→n dS = ±−→r u ×−→r v du dv. Whatever your parameters u and v are, you only
multiply the cross product by du dv. If your parameters are r and θ, you will only multiply by dr dθ.
However, if your parameters are x and y and you get a double integral involving dx dy and then want
to convert into polars, you will need to use r dr dθ.

Graph of a function:
−→r x ×−→r y = 〈−fx,−fy, 1〉

A sphere of radius a:

−→r φ ×−→r θ =
〈
a2 sin2 φ cos θ, a2 sin2 φ sin θ, a2 sinφ cos φ

〉
Or a geometric argument: the normal is 1

a 〈x, y, z〉 and the area element on the sphere is dS =
a2 sin φ dφ dθ so multiplying these together gives

d
−→
S = a sinφ 〈x, y, z〉 dφ dθ

where x, y and z are in terms of φ and θ.

A cylinder of radius a along z-axis:

−→r θ ×−→r z = 〈a cos θ, a sin θ, 0〉

Or a geometric argument: the normal is 1
a 〈x, y, 0〉 and dS = a dz dθ so multiplying together gives

d
−→
S = 〈x, y, 0〉 dz dθ = 〈a cos θ, a sin θ, 0〉 dz dθ
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3. For integrals of a scalar function f : The integrand will be f dS so we take the magnitude

dS = |−→r u ×−→r v| du dv

For integrals of a vector function
−→
F : The integrand will be

−→
F ·d

−→
S so we take the dot product with

the vector
d
−→
S = ±−→r u ×−→r v du dv

• Surface area from §15.6 is a special case of this. In that section, we were dealing only with surfaces that were
graphs of functions (not all surfaces are graphs of functions, e.g. a sphere). We were also dealing only with
integrals of scalar functions, namely integrating 1. So the dS in that case is

√
f2

x + f2
y + 1 and the surface

area is ∫ ∫
S

1 dS =
∫ ∫

D

√
f2

x + f2
y + 1 dx dy

where S is the surface and D is the domain in x and y.

• The Jacobian from §15.10 is also a special case of this. There our surface S was in the flat plane, so the
parametrization was of the form −→r (u, v) = 〈x(u, v), y(u, v), 0〉. In that section we looked at integrals of scalar
functions so the area element is dS = |−→r u ×−→r v| du dv. This is just the Jacobian ∂(x,y)

∂(u,v) .

det

 î ĵ k̂
xu yu 0
xv yv 0

 = 〈0, 0, xuyv − xvyu〉

which has magnitude |xuyv − xvyu| =
∣∣∣∂(x,y)
∂(u,v)

∣∣∣.
Stokes’ theorem. §16.8

• Taking compatible orientations on closed curve C bounding surface S (meaning if we walk around C with
our head in the direction of the normal, the surface is to the left):∫ ∫

S
curl

−→
F · d

−→
S =

∫
C

−→
F · d−→r

Divergence theorem. §16.9

• E is a solid enclosed by a closed surface S, with outward normal taken on S:∫ ∫ ∫
E

div(
−→
F ) dV =

∫ ∫
S

−→
F · d

−→
S
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