Math 53 Discussion: Review for Final

Parametrized surfaces, Surface integrals. §16.6—-16.7

e We have seen two types of surface integrals. We can integrate a scalar function or we can integrate a vector
function.

e Method:

1. Parametrize S as 7 (u,v) = (z(u,v), y(u,v), z(u,v)), find the bounds for u, v. Here are some examples.

Graph of a function z = f(z,y): = and y are the parameters.

7(1‘7 y) = <x7 Y, f(xa y)>

The domain will be the “shadow” of the surface in the zy-plane.

A sphere of radius a: ¢ and 6 are the parameters.

7 (¢,0) = {asin ¢ cos , asin ¢sin b, a cos ¢)

You determine the bounds on ¢ and 6 depending on what portion of the surface of the sphere you want.

A cylinder of radius a along z-axis: the height z and the polar angle 8 are the parameters.

7(0,2) = (acosf,asinb, z)

2. Compute 74 X T . Then WdS = +£7, X 7, du dv. Whatever your parameters u and v are, you only
multiply the cross product by du dv. If your parameters are r and 6, you will only multiply by dr df.
However, if your parameters are x and y and you get a double integral involving dz dy and then want
to convert into polars, you will need to use r dr df.

Graph of a function:

?a: X ?y = <_f1’7 _fya 1>

A sphere of radius a:

?d, X Tg= <a2 sin? ¢ cos 0, a® sin® ¢ sin 0, a® sin ¢ cos d)>

Or a geometric argument: the normal is %(w,y,z} and the area element on the sphere is dS =
a®sin ¢ d¢ df so multiplying these together gives

ds = asing (z,y,z) do df

where x, y and z are in terms of ¢ and 6.

A cylinder of radius a along z-axis:

T9x 7T, = (acosf,asinb,0)
Or a geometric argument: the normal is % (x,y,0) and dS = a dz df so multiplying together gives

ds = (x,9,0)dz df = (acosf,asinb,0)dz df



3. For integrals of a scalar function f: The integrand will be f dS so we take the magnitude

dS = |7y x T'y| du dv

For integrals of a vector function F: The integrand will be F-dS sowe take the dot product with
the vector

dS =47, x 7y du dv

e Surface area from §15.6 is a special case of this. In that section, we were dealing only with surfaces that were
graphs of functions (not all surfaces are graphs of functions, e.g. a sphere). We were also dealing only with

integrals of scalar functions, namely integrating 1. So the dS in that case is /f2 + fg + 1 and the surface

//SldS://D\/mdxdy

where S is the surface and D is the domain in z and y.

area is

e The Jacobian from §15.10 is also a special case of this. There our surface S was in the flat plane, so the

parametrization was of the form 7 (u,v) = (x(u, v),y(u,v),0). In that section we looked at integrals of scalar

functions so the area element is dS = |7, x 7| du dv. This is just the Jacobian ggzz;
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which has magnitude |z, y, — Toyu| = Aun) |

Stokes’ theorem. §16.8

e Taking compatible orientations on closed curve C' bounding surface S (meaning if we walk around C' with
our head in the direction of the normal, the surface is to the left):
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Divergence theorem. §16.9

e F is a solid enclosed by a closed surface S, with outward normal taken on S:
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