Math 53 Discussion: Review for Final

Parametrized surfaces, Surface integrals. §16.6-16.7

- We have seen two types of surface integrals. We can integrate a scalar function or we can integrate a vector function.
- Method:

1. Parametrize S as $\vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$, find the bounds for u, v. Here are some examples.

Graph of a function $z=f(x, y): x$ and y are the parameters.

$$
\vec{r}(x, y)=\langle x, y, f(x, y)\rangle
$$

The domain will be the "shadow" of the surface in the $x y$-plane.

A sphere of radius $a: \phi$ and θ are the parameters.

$$
\vec{r}(\phi, \theta)=\langle a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi\rangle
$$

You determine the bounds on ϕ and θ depending on what portion of the surface of the sphere you want.
A cylinder of radius a along z-axis: the height z and the polar angle θ are the parameters.

$$
\vec{r}(\theta, z)=\langle a \cos \theta, a \sin \theta, z\rangle
$$

2. Compute $\vec{r}_{u} \times \vec{r}_{v}$. Then $\vec{n} d S= \pm \vec{r}_{u} \times \vec{r}_{v} d u d v$. Whatever your parameters u and v are, you only multiply the cross product by $d u d v$. If your parameters are r and θ, you will only multiply by $d r d \theta$. However, if your parameters are x and y and you get a double integral involving $d x d y$ and then want to convert into polars, you will need to use $r d r d \theta$.

Graph of a function:

$$
\vec{r}_{x} \times \vec{r}_{y}=\left\langle-f_{x},-f_{y}, 1\right\rangle
$$

A sphere of radius a :

$$
\vec{r}_{\phi} \times \vec{r}_{\theta}=\left\langle a^{2} \sin ^{2} \phi \cos \theta, a^{2} \sin ^{2} \phi \sin \theta, a^{2} \sin \phi \cos \phi\right\rangle
$$

Or a geometric argument: the normal is $\frac{1}{a}\langle x, y, z\rangle$ and the area element on the sphere is $d S=$ $a^{2} \sin \phi d \phi d \theta$ so multiplying these together gives

$$
d \vec{S}=a \sin \phi\langle x, y, z\rangle d \phi d \theta
$$

where x, y and z are in terms of ϕ and θ.

A cylinder of radius a along z-axis:

$$
\vec{r}_{\theta} \times \vec{r}_{z}=\langle a \cos \theta, a \sin \theta, 0\rangle
$$

Or a geometric argument: the normal is $\frac{1}{a}\langle x, y, 0\rangle$ and $d S=a d z d \theta$ so multiplying together gives

$$
d \vec{S}=\langle x, y, 0\rangle d z d \theta=\langle a \cos \theta, a \sin \theta, 0\rangle d z d \theta
$$

3. For integrals of a scalar function f : The integrand will be $f d S$ so we take the magnitude

$$
d S=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

For integrals of a vector function \vec{F} : The integrand will be $\vec{F} \cdot d \vec{S}$ so we take the dot product with the vector

$$
d \vec{S}= \pm \vec{r}_{u} \times \vec{r}_{v} d u d v
$$

- Surface area from $\S 15.6$ is a special case of this. In that section, we were dealing only with surfaces that were graphs of functions (not all surfaces are graphs of functions, e.g. a sphere). We were also dealing only with integrals of scalar functions, namely integrating 1 . So the $d S$ in that case is $\sqrt{f_{x}^{2}+f_{y}^{2}+1}$ and the surface area is

$$
\iint_{S} 1 d S=\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y
$$

where S is the surface and D is the domain in x and y.

- The Jacobian from $\S 15.10$ is also a special case of this. There our surface S was in the flat plane, so the parametrization was of the form $\vec{r}(u, v)=\langle x(u, v), y(u, v), 0\rangle$. In that section we looked at integrals of scalar functions so the area element is $d S=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v$. This is just the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.

$$
\operatorname{det}\left(\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
x_{u} & y_{u} & 0 \\
x_{v} & y_{v} & 0
\end{array}\right)=\left\langle 0,0, x_{u} y_{v}-x_{v} y_{u}\right\rangle
$$

which has magnitude $\left|x_{u} y_{v}-x_{v} y_{u}\right|=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$.

Stokes' theorem. §16.8

- Taking compatible orientations on closed curve C bounding surface S (meaning if we walk around C with our head in the direction of the normal, the surface is to the left):

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}=\int_{C} \vec{F} \cdot d \vec{r}
$$

Divergence theorem. §16.9

- E is a solid enclosed by a closed surface S, with outward normal taken on S :

$$
\iiint_{E} \operatorname{div}(\vec{F}) d V=\iint_{S} \vec{F} \cdot d \vec{S}
$$

