Math 53 Discussion

Practice Problems: 16.1-16.2, vector fields, line integrals

1) [Question 2, Worksheet 24] Sketch the vector fields

$$
\begin{aligned}
& \vec{F}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{i}}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{j}} \\
& \vec{G}(x, y)=\frac{-y}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{i}}+\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{j}}
\end{aligned}
$$

by first showing they have unit length and are perpendicular everywhere they are defined. (In fact, the flow lines of the vector field \vec{G} are circles centered at the origin, parametrized with unit speed. See exercise 35 in $\S 16.1$ on page 1062 for a definition of flow lines.)
2) Sketch the contour plot and gradient vector field of $f(x, y)=x y$. For example, you could start by sketching the contours $f(x, y)=1$ and $f(x, y)=2$.
3) Find $\int_{C} z d s$ where C is the helix $(\cos t, \sin t, t)$ for $0 \leq t \leq \pi$.
4) Find $\int_{C} x y d x+(x-y) d y$, where $C=$ line segments from $(0,0)$ to $(2,0)$ and $(2,0)$ to $(3,2)$.
5) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=x^{2} y^{3} \hat{\mathbf{i}}-y \sqrt{x} \hat{\mathbf{j}}$ and $\vec{r}(t)=t^{2} \hat{\mathbf{i}}-t^{3} \hat{\mathbf{j}}$ for $0 \leq t \leq 1$.

Answers. 1) \vec{F} is the unit vector field that points radially outward, and \vec{G} is the vector field that is tangent to circles of radius a parametrized by $x=a \cos (t / a), y=a \sin (t / a)$. 2) Vector field arrows perpendicular to contour lines, which are hyperbolas. Arrows point in direction of increasing f. 3) $\frac{\pi^{2} \sqrt{2}}{2}$. 4) $\frac{17}{3}$. 5) $-\frac{59}{105}$.

