Math 53 Discussion

1) Evaluate the following two integrals (a) directly and (b) using Green's theorem.
(i) $[\# 5, \S 16.4] \int_{C} x y^{2} d x+2 x^{2} y d y$ where C is the triangle with vertices $(0,0),(2,2)$ and $(2,4)$.
(ii) $\oint_{C}(x-y) d x+(x+y) d y$ where C is the circle centered at the origin of radius 2 .
2) [Similar to $\# 12, \S 16.4]$ Use Green's theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=$ $\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle$ and C is the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$.
3) $[\# 17, \S 16.4]$ Use Green's theorem to find the work done by the force

$$
\vec{F}(x, y)=x(x+y) \hat{\mathbf{i}}+x y^{2} \hat{\mathbf{j}}
$$

in moving a particle from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$, and then back to the origin along the y-axis.

Answers: 1) i) 12 , ii) 8π. 2) Use Green's thm to evaluate integral around a closed curve, then $\int_{C}=\int_{\text {closed curve }}-\int_{\text {line segment }}$. Answer: $\left.\pi / 2+e^{\pi / 2}-e^{-\pi / 2} .3\right)-1 / 12$.

