Math 53 Discussion

Practice Problems: Sections 14.3-14.5. Equation of the tangent plane, linear approximations, Clairaut's Theorem, the Chain Rule

1) $[\# 33, \S 14.3]$ Find the first partial derivatives of $w=\ln (x+2 y+3 z)$.
2) Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$ where $x^{2}+y^{2}+z^{2}=3 x y z$.
3) $[\# 5 \S 14.4]$ Find an equation of the tangent plane to the surface

$$
f(x, y)=z=x \sin (x+y)
$$

at the point $(-1,1,0)$.
4) Clairaut's Theorem says that if $f_{x y}$ and $f_{y x}$ are continuous on some disk containing a point, then they are equal at that point. Verify Clairaut's theorem holds with $f(x, y)=e^{x} \cos (x y)$, for all (x, y).
5) Find the linearization of $f(x, y)=e^{x} \cos (x y)$ at $(0,0)$.
6) Find the linear approximation of $f(x, y, z)=x^{3} \sqrt{y^{2}+z^{2}}$ at $(2,3,4)$ and use it to approximate f at (1.98, 3.01, 3.97).
7) $[\# 3, \S 14.5]$ Find $\frac{d z}{d t}$ where $z=\sqrt{1+x^{2}+y^{2}}$ and $x=\ln t, y=\cos t$.

Answers: 1) $w_{x}=1 /(x+2 y+3 z)$, $\left.w_{y}=2 /(x+2 y+3 z), w_{z}=3 /(x+2 y+3 z) . \quad 2\right)$ $z_{x}=(3 y z-2 x) /(2 z-3 y x), z_{y}=(3 x z-2 y) /(2 z-3 y x)$. 3) $x+y+z=0$. 5) $z=x+1$. 6) $f(x, y, z) \approx 60 x+\frac{24}{5} y+\frac{32}{5} z-120$. Plugging in $(1.98,3.01,3.97)$ for (x, y, z) gives approximately 38.656. 7) $[(x / t)-y \sin t] / \sqrt{1+x^{2}+y^{2}}$.

