Math 53 Discussion-vector functions, lines and planes

Answers on the back.

1) Find the tangent vector function $\vec{r}^{\prime}(t)$ for the curve $\vec{r}(t)=\left\langle t^{2}, \cos 2 t,-t e^{-t}\right\rangle$. Find the equation of the tangent line to the curve at $t=0$.
2) $[13.1, \# 43]$ Find the vector function that represents the curve of intersection of the two surfaces given by the hyperboloid $z=x^{2}-y^{2}$ and the cylinder $x^{2}+y^{2}=1$.
3) $[13.4, \# 13]$ Find the velocity, acceleration, and speed of a particle with the position function $\vec{r}(t)=e^{t}(\cos t \hat{\mathbf{i}}+\sin t \hat{\mathbf{j}}+t \hat{\mathbf{k}})$.
4) $[13.4, \# 45]$ The position function of a spaceship is

$$
\vec{r}(t)=(3+t) \hat{i}+(2+\ln t) \hat{j}+\left(7-\frac{4}{t^{2}+1}\right) \hat{k}
$$

and the coordinates of a space station are $(6,4,9)$. The captain wants the spaceship to coast into the space station. When should the engines be turned off?

Answers: 1$) \vec{r}^{\prime}(t)=\left\langle 2 t,-2 \sin 2 t, e^{-t}(-1+t)\right\rangle$, parametric equation for the tangent line at $t=0$ is $\langle 0,1,-s\rangle$, where s is the parameter. 2) Look at the cylinder in the x, y plane as a circle $(\cos t, \sin t)$. Then find z from the hyberboloid. $\vec{r}(t)=\cos t \hat{\mathbf{i}}+\sin t \hat{\mathbf{j}}+\cos (2 t) \hat{\mathbf{k}}$, $0 \leq t \leq 2 \pi .3) \vec{v}(t)=e^{t}\langle\cos t-\sin t, \sin t+\cos t, t+1\rangle, \vec{a}(t)=e^{t}\langle-2 \sin t, 2 \cos t, t+2\rangle$, $|\vec{v}(t)|=e^{t} \sqrt{t^{2}+2 t+3}$. 4) $t=1$.

