Math 53 Discussion

Practice Problems (from textbook and Math 53 worksheets):
Area and arc length of parametric curves

1) When a parametric curve comes from the graph of a function $y=f(x)$ for $a \leq x \leq b$, show that the formula for arc-length gives

$$
\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

2) [Worksheet 2, Problem 1] Let C be the curve $x=2 \cos t, y=\sin t$.

- What kind of curve is this?
- Find the slope of the tangent line to the curve when $t=0, t=\pi / 4$, and $t=\pi / 2$.
- Find the area of the region enclosed by C. (Hint: $\sin ^{2} t=(1-\cos 2 t) / 2$.)

3) Find the area of the region enclosed by the curve $x(t)=1-t, y(t)=e^{t}$ and the vertical lines $x=0, x=2$.
4) Find the arc length of the curve $x(t)=e^{t}+e^{-t}, y(t)=2 t-5$ for $0 \leq t \leq 3$.

Answers: 1) Use the parametrization $(t, f(t))$. 2) Ellipse. Slopes are infinite, $-1 / 2,0$. Area is 2π; it helps to compute a quarter of the area and then multiply by 4 . Note that the bounds on x always go from smaller x to larger x, however when we change variables to t using the parametrization, it may happen that the lower bound on t is larger than the upper bound on t. That's okay - we get a positive answer which is what we expect for area. 3) $\int_{1}^{-1} e^{t}(-d t)=e-\frac{1}{e}$. 4) $\int_{0}^{3} \sqrt{\left(e^{t}-e^{-t}\right)^{2}+4} d t=e^{3}-e^{-3}$.

