Math 53 Discussion

Practice Problems (from textbook and Math 53 worksheets):
Area and arc length of parametric curves

1) When a parametric curve comes from the graph of a function \(y = f(x) \) for \(a \leq x \leq b \), show that the formula for arc-length gives
\[
\int_a^b \sqrt{1 + f'(x)^2} \, dx
\]

2) [Worksheet 2, Problem 1] Let \(C \) be the curve \(x = 2 \cos t, y = \sin t \).
 • What kind of curve is this?
 • Find the slope of the tangent line to the curve when \(t = 0, t = \pi/4, \) and \(t = \pi/2 \).
 • Find the area of the region enclosed by \(C \). (Hint: \(\sin^2 t = (1 - \cos 2t)/2 \).)
3) Find the area of the region enclosed by the curve \(x(t) = 1 - t, y(t) = e^t \) and the vertical lines \(x = 0, x = 2 \).

4) Find the arc length of the curve \(x(t) = e^t + e^{-t}, y(t) = 2t - 5 \) for \(0 \leq t \leq 3 \).

Answers: 1) Use the parametrization \((t, f(t))\). 2) Ellipse. Slopes are infinite, \(-1/2, 0\). Area is \(2\pi\); it helps to compute a quarter of the area and then multiply by 4. Note that the bounds on \(x \) always go from smaller \(x \) to larger \(x \), however when we change variables to \(t \) using the parametrization, it may happen that the lower bound on \(t \) is larger than the upper bound on \(t \). That’s okay - we get a positive answer which is what we expect for area. 3) \(\int_{-1}^{1} e^t (-dt) = e - \frac{1}{e} \). 4) \(\int_{0}^{3} \sqrt{(e^t - e^{-t})^2 + 4} \, dt = e^3 - e^{-3} \).