Worksheet 9: Derivatives and Limits

Russell Buehler
b.r@berkeley.edu

www.xkcd.com

1. If $g(x)=x^{4}-2$, find $g^{\prime}(1)$ using the definition of the derivative and use it to find the equation of the tangent line of $g(x)$ at $(1,-1)$.
2. List, with either an example graph or function and non-differentiable point, the ways in which a function can fail to be differentiable:
(a)
(b)
(c)
3. (True or False) and why:
(a) If a function is differentiable, then it is continuous.
(b) If a function is continuous, then it is differentiable.
4. Give the physics interpretation for each of the following:
(a) First Derivative
(b) Second Derivative
(c) Third Derivative
5. (True or False) and why.
(a) If $\lim _{x \rightarrow 5} f(x)=0$ and $\lim _{x \rightarrow 5} g(x)=0$, then $\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}$ does not exist.
(b) If neither $\lim _{x \rightarrow a} f(x)$ nor $\lim _{x \rightarrow a} g(x)$ exists, then $\lim _{x \rightarrow a} f(x)+g(x)$ does not exist.
(c) If the limit $\lim _{x \rightarrow 6} f(x) g(x)$ exists, then the limit is $f(6)(g(6))$.
(d) If $p(x)$ is a polynomial, then the limit $\lim _{x \rightarrow 6} p(x)$ is $p(6)$.
(e) If $\lim _{x \rightarrow 0} f(x)=\infty$ and $\lim _{x \rightarrow 0} g(x)=\infty$, then $\lim _{x \rightarrow 0} f(x)-g(x)=0$.
6. Solve:
(a) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-9}}{2 x-6}$
(b) $\lim _{x \rightarrow 1} e^{x^{3}-x}$
(c) $\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-x}{x^{3}-3 x^{2}}$
(d) $\lim _{x \rightarrow \pi^{-}} \ln (\sin (x))$
7. Sketch the graph of a function for which $f(0)=0, f^{\prime}(0)=-1, f(1)=0$, and $f^{\prime}(1)=-1$.
8. Write the general form for:
(a) The Power Rule
(b) The Constant Multiple Rule
(c) The Sum Rule
(d) The Difference Rule
9. Find the first and second derivative of: $f(x)=6 x^{-\frac{8}{3}}$. Express them in both major notations.
10. Find the first and second derivative of: $f(x)=e^{x}-5$. Express them in both major notations.
