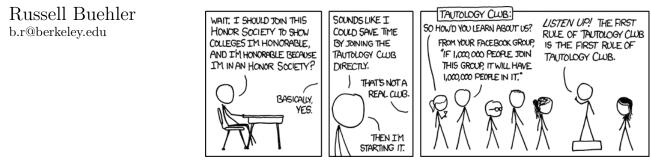
Worksheet 9: Derivatives and Limits

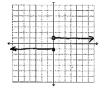


- www.xkcd.com
- 1. If $g(x) = x^4 2$, find g'(1) using the definition of the derivative and use it to find the equation of the tangent line of g(x) at (1, -1).

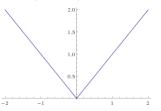
$$\begin{split} \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} &= \lim_{h \to 0} \frac{(x+h)^4 - 2 - (x^4 - 2)}{h} \\ &= \lim_{h \to 0} \frac{(x^2 + 2xh + h^2)^2 - x^4}{h} \\ &= \lim_{h \to 0} \frac{x^4 + 2x^3h + x^2h^2 + 2x^3h + 4x^2h^2 + 2xh^3 + h^2x^2 + 2xh^3 + h^4 - x^4}{h} \\ &= \lim_{h \to 0} \frac{2x^3h + x^2h^2 + 2x^3h + 4x^2h^2 + 2xh^3 + h^2x^2 + 2xh^3 + h^4}{h} \\ &= \lim_{h \to 0} 2x^3 + x^2h + 2x^3 + 4x^2h + 2xh^2 + hx^2 + 2xh^2 + h^3 \\ &= 2x^3 + 2x^3 \\ &= 4x^3 \end{split}$$

It follows that g'(1) = 4. We therefore have y = 4x + b as the equation of our tangent line. Substituting (1, -1), -1 = 4(1) + b, and thus b = -5. The equation of the tangent line of g(x) at (1, -1) is therefore y = 4x - 5.

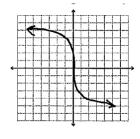
- 2. List, with either an example graph or function and non-differentiable point, the ways in which a function can fail to be differentiable:
 - (a) Jump Discontinuity (at x=0)



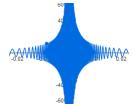
(b) Kink (at x=0)



(c) Vertical Tangent Line (at x=0)



(d) Infinite Oscillation (at x=0)



- 3. (True or False) and why:
 - (a) If a function is differentiable, then it is continuous. True; theorem from the book (pg. 158).
 - (b) If a function is continuous, then it is differentiable. False; f(x) = |x| is continuous, but not differentiable.
- 4. Give the physics interpretation for each of the following:
 - (a) First Derivative Velocity
 - (b) Second Derivative Acceleration
 - (c) Third Derivative Jerk
- 5. (True or False) and why.
 - (a) If $\lim_{x\to 5} f(x) = 0$ and $\lim_{x\to 5} g(x) = 0$, then $\lim_{x\to 5} \frac{f(x)}{g(x)}$ does not exist. False; f(x) = g(x) = x - 5 is a counterexample.
 - (b) If neither $\lim_{x \to a} f(x)$ nor $\lim_{x \to a} g(x)$ exists, then $\lim_{x \to a} f(x) + g(x)$ does not exist. False; $f(x) = \frac{x+1}{x}$, $g(x) = \frac{-1}{x}$, and a = 0 is a counterexample.
 - (c) If the limit $\lim_{x\to 6} f(x)g(x)$ exists, then the limit is f(6)(g(6)). False; let f(x) = g(x) where $f(6) \neq \lim_{x\to 6} f(x)$ (move the value at 6 only).
 - (d) If p(x) is a polynomial, then the limit $\lim_{x\to 6} p(x)$ is p(6). True; it's a direct result of the limit laws (see pg.101)
 - (e) If $\lim_{x\to 0} f(x) = \infty$ and $\lim_{x\to 0} g(x) = \infty$, then $\lim_{x\to 0} f(x) g(x) = 0$. False; $f(x) = \frac{2}{x}$, $g(x) = \frac{1}{x}$ is a counterexample.
- 6. Solve:

(a)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{2x - 6}$$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{2x - 6} = \lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{2x - 6} \left(\frac{\frac{1}{x}}{\frac{1}{x}}\right)$$
$$= \lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{2x - 6} \left(\frac{\frac{1}{x}}{\frac{1}{x}}\right)$$
$$= \lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{\frac{2x - 6}{x}}$$
$$= \lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{\frac{\sqrt{x^2}}{2 - \frac{6}{x}}}$$
$$= \lim_{x \to \infty} \frac{\sqrt{\frac{x^2 - 9}{x^2}}}{2 - \frac{6}{x}}$$
$$= \lim_{x \to \infty} \frac{\sqrt{1 - \frac{9}{x^2}}}{2 - \frac{6}{x}}$$
$$= \frac{\sqrt{1 - 0}}{2 - 0}$$
$$= \frac{1}{2}$$

(b) $\lim_{x \to 1} e^{x^3 - x}$

This limit doesn't actually exist...which I wasn't expecting when I chose it; apologies.

(c) $\lim_{x \to 3} \frac{\sqrt{x+6} - x}{x^3 - 3x^2}$

$$\lim_{x \to 3} \frac{\sqrt{x+6} - x}{x^3 - 3x^2} = \lim_{x \to 3} \frac{\sqrt{x+6} - x}{x^3 - 3x^2} \left(\frac{\sqrt{x+6} + x}{\sqrt{x+6} + x}\right)$$
$$= \lim_{x \to 3} \frac{x+6-x^2}{(x^3 - 3x^2)(\sqrt{x+6} + x)}$$
$$= \lim_{x \to 3} \frac{-(x-3)(x+2)}{(x^2(x-3))(\sqrt{x+6} + x)}$$
$$= \lim_{x \to 3} \frac{-(x+2)}{(x^2)(\sqrt{x+6} + x)}$$
$$= \frac{-5}{(9)(3+3)}$$
$$= -\frac{5}{54}$$

(d) $\lim_{x \to \pi^-} \ln(\sin(x))$

Analyzing the limit conceptually, note that as we approach π from the left, $\sin(x)$ approaches 0 from the right. If $\sin(x)$ is approaching 0 from the right, then $\ln(\sin(x))$ is approaching $-\infty$ (recall the ln graph).

7. Sketch the graph of a function for which f(0) = 0, f'(0) = -1, f(1) = 0, and f'(1) = -1.

П	-	—	_	2	~	-	C					
			-		_	-				-		
			7	-	_				_	-		_
		-			Ň	Ã			-		-	
		1	-		-	•)			-		-
					-		_		S	4		
		+				_					-	
		-l				H		ш				

8. Write the general form for:

- (a) The Power Rule $-\frac{d}{dx}(x^n) = nx^{n-1}$ for n a real number
- (b) The Constant Multiple Rule $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$ for a constant c and f differentiable
- (c) The Sum Rule if f, g differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
- (d) The Difference Rule if f, g differentiable, then $\frac{d}{dx}[f(x) g(x)] = \frac{d}{dx}f(x) \frac{d}{dx}g(x)$
- 9. Find the first and second derivative of: $f(x) = 6x^{-\frac{8}{3}}$. Express them in both major notations. Applying the rules above, $f'(x) = \frac{df}{dx} = 6(-\frac{8}{3})x^{-\frac{11}{3}} = -16x^{-\frac{11}{3}}$. Taking the derivative again, $f''(x) = \frac{d^2f}{dx^2} = -16(-\frac{11}{3})x^{-\frac{14}{3}} = \frac{176}{3}x^{-\frac{14}{3}}$.
- 10. Find the first and second derivative of: $f(x) = e^x 5$. Express them in both major notations. Applying the rules above plus some knowledge of e^x , $f'(x) = \frac{df}{dx} = e^x$. Taking the derivative again, $f''(x) = \frac{d^2f}{dx^2} = e^x$.