Worksheet 5: Not PreCalc!

Russell Buehler
b.r@berkeley.edu

1. Determine the infinite limit: $\lim _{x \rightarrow-3^{-}} \frac{x+2}{x+3}$.
2. Evaluate the limit: $\lim _{t \rightarrow 2} \frac{t^{2}-2}{t^{3}-3 t+5}$.
3. Evaluate the limit, if it exists:
(a) $\lim _{t \rightarrow 1} \frac{t^{4}-1}{t^{3}-1}$.
(b) $\lim _{t \rightarrow 0} \frac{1}{t \sqrt{1+t}}-\frac{1}{t}$.
(c) $\lim _{x \rightarrow-6} \frac{2 x+12}{|x+6|}$.
4. The formal definition of the limit is:

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if }
$$

$\forall \epsilon>0, \exists \delta$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$
Explain the second line of the definition in simple English.
5. Let $f(x)=x^{2}-1$. Prove $\lim _{x \rightarrow 1} f(x)=0$.
6. A fun problem that you will not be held accountable for-at all-but that destroyed mathematician's careers in the late 1800s and early 1900s.
(a) If you recall from last week, we say that a function f is bijective if it is both one-to-one (injective) and onto (surjective). Bijective functions, then, are those functions which associate every x-value with its own y-value and leave no y-values without an x-value. Mathematicians sometimes make the claim that the existence of a bijective function between two sets means the sets have the same number of elements; explain.
(b) Georg Cantor, a mathematician, applied the ideas above to infinite sets. Following him, is the set of all positive odd numbers the same 'size' as the set of all positive even numbers?
(c) Let \mathbb{N} denote the set of natural numbers $(0,1,2,3,4, \ldots)$ and \mathbb{R} denote the set of real numbers. Assume that \mathbb{N} is, in fact, the same size as \mathbb{R} (both are, after all, infinitely large); it follows that \mathbb{N} is at least as large as the interval $(0,1)$. Taking our bijection between \mathbb{N} and \mathbb{R}, then, we should be able to create a table as below (filling in random decimal expansions if a natural number was mapped to something not in $(0,1)$ in the original bijection),

$$
\begin{aligned}
f(0) & =.123456789 \ldots \\
f(1) & =.234567891 \ldots \\
f(2) & =.345678912 \ldots \\
f(3) & =.456789123 \ldots \\
f(4) & =.567891234 \ldots \\
\vdots & \vdots
\end{aligned}
$$

wherein a decimal expansion for every value in $(0,1)$ appears at least once on the right side. Can you find a number in the interval $(0,1)$ that isn't in the table? Hint: Describe a rule that will give such a number.
(d) What can you conclude about the relative 'sizes' of \mathbb{N} and the interval $(0,1) ? \mathbb{N}$ and \mathbb{R} ?

