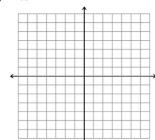
Worksheet 4: More PreCalc?!

Russell Buehler

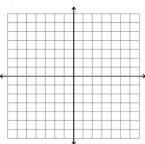
b.r@berkeley.edu

1. Are the following functions one-to-one? If so and represented with a graph, draw their inverse.

(a) Yes



(b) No



(c) No

	-	
	Sarah	Apple
	Mike	Video Games
	Angel	Guitar
	Aun	Drums
ĺ	Sophie	Guitar

2. What is the domain of the function $f(x) = ln(x^2 - 6x + 9)$?

Recall that ln is only defined for values greater than 0. It follows, then, that we need to determine when $x^2 - 6x + 9$ is greater than 0. Graphing $x^2 - 6x + 9 = (x - 3)^2$ gives an upward parabola that touches the x-axis at x = 3, but never drops below it. The only point in the range of $x^2 - 6x + 9$ which is not greater than 0 is therefore x = 3, and so the domain for f(x) is $\mathbb{R} - \{3\}$ or $(-\infty, 3) \cup (3, \infty)$.

3. Solve: $\frac{1}{x-5} < 7$.

Although this problem looks simple, a correct solution requires considering two different cases since inequalities change with the multiplication of a negative number. In particular, we consider:

Case 1:
$$x > 5$$

$$\frac{1}{x-5} < 7$$

$$1 < 7(x-5)$$

$$\frac{1}{7} < x-5$$

$$x > \frac{1}{7} + 5$$

Case 2:
$$x < 5$$

$$\frac{1}{x-5} < 7$$

$$1 > 7(x-5)$$

$$\frac{1}{7} > x-5$$

$$x < \frac{1}{7} + 5$$

But, by assumption, x < 5, so the overlap between the two inequalities or x < 5 is the solution.

The final solution is therefore x < 5 or $x > \frac{1}{7} + 5$.

4. Find the domain: $f(x) = \sqrt{3 - \sqrt{x - 2}}$

The square roots in this problem give rise to two different constraints:

$$3 - \sqrt{x - 2} \ge 0$$

$$x - 2 \ge 0$$

Solving the latter first, we obtain:

$$x \ge 2$$

Solving the former:

$$3 \ge \sqrt{x-2}$$

$$9 \ge x - 2$$
$$11 \ge x$$

And so the final solution is $2 \le x \le 11$.

5. Sketch the graph of $f(x) = |x^2 - 2x|$.

We begin by noting that $x^2 - 2x$ is the equation for an upright parabola with zeroes at 0 and 2 $(x^2 - 2x = x(x - 2))$. The sketch of the graph follows easily.

6. For the function f(x) graphed below, give the following:

(a)
$$\lim_{x \to 2} f(x) = -\infty$$

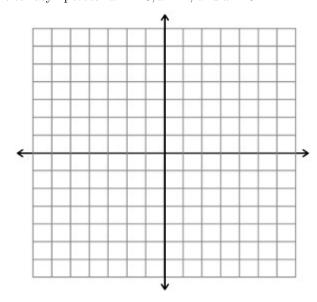
(c)
$$\lim_{x \to 2} f(x) = -\infty$$

(b)
$$\lim_{x \to 5} f(x) = \infty$$

(b)
$$\lim_{x\to 5} f(x) = \infty$$

(d) $\lim_{x\to -3^+} f(x) = \infty$

 $\begin{array}{l} \text{(a)} \lim_{x\to 2}f(x)=-\infty\\ \text{(c)} \lim_{x\to -3^-}f(x)=-\infty\\ \text{(d) The vertical asymptotes: }x=-3,x=2\text{, and }x=5. \end{array}$



7. Draw a function f(x) such that: $\lim_{x\to 2^-} f(x) = -2$, $\lim_{x\to 2^+} f(x) = 0$, and f(2) = 2.

