Worksheet 29: The Fundamental Thm. of Calculus

Russell Buehler

b.r@berkeley.edu

- 1. The fundamental theorem of calculus has one assumption and two parts (see page. 393 if you don't remember).
 - (a) What is the assumption?

www.xkcd.com

- (b) What are the two conclusions?
- 2. What, conceptually, is a function of the form $g(x) = \int_a^x f(t) dt$? How is x constrained?
- 3. Find the derivative of the following:

(a)
$$g(x) = \int_3^x e^{t^2 - t} dt$$

(b)
$$g(r) = \int_3^r \sqrt{x^2 + 4} \, dx$$

(c)
$$G(x) = \int_{x}^{1} \cos(\sqrt{t}) dt$$

(d)
$$y = \int_0^{x^4} \cos^2(\theta) d\theta$$

4. Evaluate the integral

(a)
$$\int_{-1}^{1} x^{100} dx$$

(b)
$$\int_{-5}^{5} e \, dx$$

(c)
$$\int_0^{\frac{\pi}{4}} \sec(\theta) \tan(\theta) d\theta$$

5. What's wrong?

$$\int_{-1}^{2} \frac{4}{x^3} dx = \frac{-2}{x^2} \bigg]_{-1}^{2} = \frac{3}{2}$$

6. What's the difference between $\int_0^1 (x^3 + x + 1) dx$ and $\int x^3 + x + 1$? Find each.

7. Verify the following:

$$\int \cos^3(x) \ dx = \sin(x) - \frac{1}{3}\sin^3(x) + C$$

8. Find the general indefinite integral:

(a)
$$\int 2^x dx$$

(b)
$$\int \sec(t)(\sec(t) + \tan(t)) dt$$

9. Evaluate the integral:

(a)
$$\int_0^3 (1+6w^2-10w^4)dw$$

(b)
$$\int_0^1 (5x - 5^x) dx$$