Worksheet 25: Newton's Method

Russell Buehler

b.r@berkeley.edu

BREAKING: TO SURPRISE OF PUNDITS, NUMBERS CONTINUE TO BE BEST SYSTEM FOR DETERMINING WHICH OF TWO THINGS IS LARGER.

www.xkcd.com

1. Use Newton's method starting with $x_1 = -1$ to find x_3 the third approximation of the root of $x^7 + 4 = 0$.

2. Use Newton's method to approximate $\sqrt[100]{100}$ to 4 decimal places.

3. Use Newton's method to find the roots of $\frac{1}{x} = 1 + x^3$ to 3 decimal places.

4. Find the most general anti-derivative:

(a)
$$f(x) = \frac{1}{2}x^2 - 2x + 6$$

(b)
$$f(x) = x(2-x)^2$$

(c)
$$y = e^2$$

(d)
$$f(x) = \sqrt[3]{x^2} + x\sqrt{x}$$

(e)
$$r(\theta) = \sec(\theta) \tan(\theta) - 2e^{\theta}$$

(f)
$$f(x) = \frac{2x}{1+x^2}$$

5. Find
$$f$$

(a)
$$f''(x) = 8x^3 + 5, f(1) = 0, f'(1) = 8$$

(b)
$$f''(t) = 2e^t + 3\sin(t), f(0) = 0, f'(\pi) = 0$$

(c)
$$f'''(x) = \cos(x), f(0) = 1, f'(0) = 2, f''(0) = 3$$