
www.XKCD.com

1. Let $f(x)=x^{4}$. Find $f(2), f(4 a)$, and $f(a-5)$.
2. Let $f(x)=-x^{2}+5 x+11$. Find $2 f(a), f(2 a), f\left(a^{2}\right), f(a)^{2}$, and $f(a+h)$.
3. Let $f(x)=\frac{x+3}{x+1}$. Find $\frac{f(x)-f(1)}{x-1}$.
4. Explain the difference between something failing to be a function because of the 'Vertical Line Test' and failing because a single x-value was mapped to multiple y-values.
5. Classify, with justification, whether the following functions are even or odd.
(a) $f(x)=x^{2}$
(b) $f(x)=x^{3}+x$
(c) $f(x)=x^{3}+1$
6. If the expression given defines a function, find its domain.
(a) Mapping each student in the classroom to the seat in which they are sitting.
(b) $f(x)=\frac{x^{2}+1}{x^{2}-4}$
(c) $f(x)=\frac{x^{10}+x^{4}+x^{3}+x+11}{x-1}$
7. After years of intense research, UC-Berkeley's science faculty have determined that the 'awesomeness' of logic (L) is a linear function of the amount of time you've spent studying logic (S). In particular, scientists believe this function to be $L=\frac{8}{5} S+10$.
(a) Sketch a graph of this function
(b) What is the slope of the graph and what does it represent?
(c) What is the S-intercept of the graph and what does it represent?
8. Let $f(x)=\frac{x^{2}}{x-1}$ and define the domain of $f(x)$ as the real line (\mathbb{R}). Is $f(x)$ a function? Why or Why not?
9. Let $f(x)=x^{3}-4, g(x)=x^{2}$. Find $f \circ g(x)$ and $g \circ f(x)$.
10. Simplify the following:
(a) $x^{5}\left(x^{4}\right)$
(b) $\frac{x^{-2}}{x^{-4}}$
(c) $\frac{4^{-3}}{2^{-6}}$
