1. Let \(f(x) = x^4 \). Find \(f(2) \), \(f(4a) \), and \(f(a - 5) \).

2. Let \(f(x) = -x^2 + 5x + 11 \). Find \(2f(a) \), \(f(2a) \), \(f(a^2) \), \(f(a)^2 \), and \(f(a + h) \).

3. Let \(f(x) = \frac{x+3}{x+1} \). Find \(\frac{f(x) - f(1)}{x - 1} \).

4. Explain the difference between something failing to be a function because of the ‘Vertical Line Test’ and failing because a single \(x \)-value was mapped to multiple \(y \)-values.

5. Classify, with justification, whether the following functions are even or odd.
 (a) \(f(x) = x^2 \)

 (b) \(f(x) = x^3 + x \)

 (c) \(f(x) = x^3 + 1 \)
6. If the expression given defines a function, find its domain.
 (a) Mapping each student in the classroom to the seat in which they are sitting.

 (b) \(f(x) = \frac{x^2+1}{x-4} \)

 (c) \(f(x) = \frac{x^{10}+x^4+x^3+x+11}{x-1} \)

7. After years of intense research, UC-Berkeley’s science faculty have determined that the ‘awesomeness’ of logic (\(L \)) is a linear function of the amount of time you’ve spent studying logic (\(S \)). In particular, scientists believe this function to be \(L = \frac{8}{5}S + 10 \).
 (a) Sketch a graph of this function

 (b) What is the slope of the graph and what does it represent?

 (c) What is the \(S \)-intercept of the graph and what does it represent?

8. Let \(f(x) = \frac{x^2}{x-1} \) and define the domain of \(f(x) \) as the real line (\(\mathbb{R} \)). Is \(f(x) \) a function? Why or Why not?

9. Let \(f(x) = x^3 - 4, g(x) = x^2 \). Find \(f \circ g(x) \) and \(g \circ f(x) \).

10. Simplify the following:
 (a) \(x^5(x^4) \)

 (b) \(\frac{x^{-2}}{x^4} \)

 (c) \(\frac{4^{-3}}{x^4} \)