Worksheet 2: More PreCalc!

Russell Buehler

b.r@berkeley.edu

www.XKCD.com

1. Let $f(x)=x^{4}$. Find $f(2), f(4 a)$, and $f(a-5)$.
$f(2)=2^{4}=16$
$f(4 a)=(4 a)^{4}=256 a^{4}$
$f(a-5)=(a-5)^{4}$
2. Let $f(x)=-x^{2}+5 x+11$. Find $2 f(a), f(2 a), f\left(a^{2}\right), f(a)^{2}$, and $f(a+h)$.

$$
\begin{aligned}
2 f(a) & =2\left(-a^{2}+5 a+11\right)=-2 a^{2}+10 a+22 \\
f(2 a) & =-(2 a)^{2}+5(2 a)+11=-4 a^{2}+10 a+11 \\
f\left(a^{2}\right) & =-\left(a^{2}\right)^{2}+5\left(a^{2}\right)+11=-a^{4}+5 a^{2}+11 \\
f(a)^{2} & =\left(-a^{2}+5 a+11\right)^{2} \\
f(a+h) & =-(a+h)^{2}+5(a+h)+11
\end{aligned}
$$

3. Let $f(x)=\frac{x+3}{x+1}$. Find $\frac{f(x)-f(1)}{x-1}$.

$$
\begin{aligned}
\frac{f(x)-f(1)}{x-1} & =\frac{\frac{x+3}{x+1}-\frac{1+3}{1+1}}{x-1} \\
& =\frac{\frac{x+3}{x+1}-2}{x-1} \\
& =\frac{\frac{x+3}{x+1}-\frac{2(x+1)}{x+1}}{x-1} \\
& =\frac{\frac{x+3-2 x-2}{x+1}}{x-1} \\
& =\frac{\frac{-x+1}{x+1}}{x-1} \\
& =\frac{-(x-1)}{x+1}\left(\frac{1}{x-1}\right) \\
& =\frac{1}{x+1}
\end{aligned}
$$

4. Explain the difference between something failing to be a function because of the 'Vertical Line Test' and failing because a single x-value was mapped to multiple y-values.
There is no difference.
5. Classify, with justification, whether the following functions are even or odd.
(a) $f(x)=x^{2}$

Even;

$$
\begin{aligned}
f(x) & =x^{2} \\
& =(-x)^{2} \\
& =f(-x)
\end{aligned}
$$

(b) $f(x)=x^{3}+x$

Odd;

$$
\begin{aligned}
-f(x) & =-\left(x^{3}+x\right) \\
& =-x^{3}-x \\
& =(-x)^{3}-x \\
& =f(-x)
\end{aligned}
$$

(c) $f(x)=x^{3}+1$

Neither;

$$
\begin{aligned}
f(x) & =x^{3}+1 \\
f(-x) & =(-x)^{3}+1 \\
& =-x^{3}+1 \\
f(x) & \neq f(-x)
\end{aligned}
$$

6. If the expression given defines a function, find its domain.
(a) Mapping each student in the classroom to the seat in which they are sitting.

Function; domain: the set of students in the classroom (assuming none are not sitting in a chair or are sitting in multiple chairs)
(b) $f(x)=\frac{x^{2}+1}{x^{2}-4}$

Function; domain: $\mathbb{R}-\{ \pm 2\}$ or-equivalently- $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
(c) $f(x)=\frac{x^{10}+x^{4}+x^{3}+x+11}{x-1}$

Function; domain: $\mathbb{R}-\{1\}$ or-equivalently- $(-\infty, 1) \cup(1, \infty)$.
7. After years of intense research, UC-Berkeley's science faculty have determined that the 'awesomeness' of logic (L) is a linear function of the amount of time you've spent studying logic (S). In particular, scientists believe this function to be $L=\frac{8}{5} S+10$.
(a) Sketch a graph of this function
(b) What is the slope of the graph and what does it represent?

The slope of the graph is $\frac{8}{5}$ (note that the equation above is in slope-intercept form). This means there is an increase of $\frac{8}{5}$ in the awesomeness of logic for every 1 unit increase in time spent studying logic.
(c) What is the S-intercept of the graph and what does it represent?

The S-intercept of the graph is found by replacing L with 0 and solving as below:

$$
\begin{aligned}
0 & =\frac{8}{5} S+10 \\
-10 & =\frac{8}{5} S \\
S & =\frac{-50}{8} \\
S & =-\frac{25}{4}
\end{aligned}
$$

and represents the number of hours studying when the awesomeness of logic is 0 .
8. Let $f(x)=\frac{x^{2}}{x-1}$ and define the domain of $f(x)$ as the real line (\mathbb{R}). Is $f(x)$ a function? Why or Why not?

No. Because the domain was defined as the entire real line, the domain contains $x=1-$ a value for which f is not defined.
9. Let $f(x)=x^{3}-4, g(x)=x^{2}$. Find $f \circ g(x)$ and $g \circ f(x)$.

$$
\begin{gathered}
f \circ g(x)=f(g(x))=\left(x^{2}\right)^{3}-4=x^{6}-4 \\
g \circ f(x)=g(f(x))=\left(x^{3}-4\right)^{2}
\end{gathered}
$$

10. Simplify the following:
(a) $x^{5}\left(x^{4}\right)=x^{5+4}=x^{9}$
(b) $\frac{x^{-2}}{x^{-4}}=\frac{x^{4}}{x^{2}}=x^{4-2}=x^{2}$
(c) $\frac{4^{-3}}{2^{-6}}=\frac{2^{6}}{4^{3}}=\frac{2^{6}}{2^{2^{3}}}=\frac{2^{6}}{2^{6}}=1$
