Worksheet 14: Implicit Differentiation

Russell Buehler

b.r@berkeley.edu

www.xkcd.com

1. Using Leibniz notation, find the derivative of $x^2 + y^2 = 1$ without solving for y. Why is Leibniz notation good for implicit differentiation?

2. Write out the derivatives of the inverse trigonometric functions; what patterns do you see?

3. Find the derivative:

(a)
$$x^3 + y^3 = 6xy$$

(b)
$$f(x) = \arcsin(x^3 + 1)$$

(c)
$$xe^y = x - y$$

(d)
$$y = e^{\cot^{-1}(x^2)} + x^3$$

(e)
$$\tan(x - y) = \frac{y}{1 + x^2}$$

4. Use implicit differentiation to find an equation of the tangent line to the curve $\sin(x+y) = 2x - 2y$ at the	e point (π,π) .