

Russell Buehler b.r@berkeley.edu

1. Write the general form for:

- (a) The Product Rule
- (b) The Quotient Rule
- 2. Find the derivative.

(a)
$$f(x) = e^x + 14\pi^2 e^4 + x^{\pi} + 4x^e + \frac{x+2}{\sqrt{x}}$$

(b)
$$y = \frac{x^3}{1-x^2}$$

(c)
$$g(x) = \sqrt{x}e^x$$

(d)
$$z = \frac{t}{(2t-1)^2}$$

(e)
$$v(t) = \frac{t - \sqrt{t}}{t^{\frac{1}{3}}}$$

(f)
$$K(y) = \frac{y(1-y^{\frac{4}{5}})}{y(e^y)}$$

- 3. True or False; if true, give an explanation as to why. If false, give a counterexample.
 - (a) If f,g are differentiable, then $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$.

(b) If f,g are differentiable, then	$\frac{d}{dx}[f(x)g(x)] = f'(x)g'(x)$	x)
---------------------------------------	---------------------------------------	----

(c) If
$$y = e^2$$
, then $y' = 2e$.

- (d) The derivative of a polynomial is a polynomial.
- 4. Determine for what values of x the function f(x) = x|x| is differentiable and find a formula for f'.
- 5. Find all points on the curve $y = \frac{7}{3}x^3 + \frac{1}{4}x^4 + 6x^2$ where the tangent is horizontal.
- 6. Solve.

(a)
$$\lim_{x \to \infty} \frac{11x^3 - 5}{x^2 - 5x + 11}$$

(b)
$$\lim_{x \to -\infty} \frac{(2x+1)(x+17)}{(x+4)(x+7)}$$

(c)
$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{4x - x^2}$$

- 7. Let f(x) be a curve.
 - \bullet Give an expression for the secant line through points (y,f(y)) and (z,f(z))
 - Give an expression for the tangent line through the point x=w