Worksheet 10: Basic Derivatives

Russell Buehler

b.r@berkeley.edu

www.xkcd.com

1. If you haven't already, write the general form for:
(a) The Power Rule
$\frac{d}{d x} x^{r}=r x^{r-1}$ for all real numbers r
(b) The Constant Multiple Rule
$\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)$ if $f(x)$ differentiable and c a constant
(c) The Sum Rule
$\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$ if $f(x), g(x)$ differentiable.
(d) The Difference Rule
$\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)$ if $f(x), g(x)$ differentiable.
2. Find the first and second derivative of: $f(x)=3 x^{2}$. Express them in both major notations. $f^{\prime}(x)=\frac{d}{d x} f(x)=6 x ; f^{\prime \prime}(x)=\frac{d^{2}}{d x^{2}} f(x)=6$
3. Find the first and second derivative of: $f(t)=2 e^{t}-5$. Express them in both major notations.
$f^{\prime}(t)=\frac{d}{d t} f(t)=2 e^{t} ; f^{\prime \prime}(t)=\frac{d^{2}}{d t^{2}} f(t)=2 e^{t}$
4. Find derivative; express it in both major notations.
(a) $f(x)=\frac{x^{2}+x+1}{x}=x+1+x^{-1}$
$f^{\prime}(x)=\frac{d}{d x} f(x)=1-x^{-2}$
(b) $f(p)=3 p-\sqrt{p}$
$f^{\prime}(p)=\frac{d}{d p} f(p)=3-\frac{1}{2} p^{-\frac{1}{2}}$
(c) $B(a)=5 e^{a}+\sqrt{a}+6 a^{2}$
$B^{\prime}(a)=\frac{d}{d a} B(a)=5 e^{a}+\frac{1}{2} a^{-\frac{1}{2}}+12 a$
5. Find an equation of the tangent line to the curve $y=x \sqrt{x}$ that is parallel to the line $y-1=3 x$

Since the line $y-1=3 x$ has slope 3 , we're looking for the tangent line with slope 3 . To find this point, we can use the derivative (recall that the derivative gives the slope at x). Taking the derivative of y, we obtain $y^{\prime}=\frac{3}{2} x^{\frac{1}{2}}$. Setting this equal to our desired slope:

$$
\begin{aligned}
\frac{3}{2} x^{\frac{1}{2}} & =3 \\
x^{\frac{1}{2}} & =2 \\
x & =4
\end{aligned}
$$

We may obtain the y-value corresponding to $x=4$ by plugging into the original function, $y=4 \sqrt{4}=8$. To get the equation of the tangent line we plug our point into $y=3 x+b$, obtaining

$$
\begin{aligned}
8 & =3(4)+b \\
-4 & =b
\end{aligned}
$$

The final solution is thus $y=3 x-4$.

