
Worksheet 1: A Review of PreCalc

Russell Buehler

b.r@berkeley.edu

www.XKCD.com

- 1. Which of the following are functions?
 - (a) $f(x) = x^3 + x + 1$
 - (b) $f(x) = \begin{cases} 1 & : x \le 1 \\ 5 & : 1 < x \le 2 \\ 0 & : x \ge 2 \end{cases}$
 - (c) $y = \frac{1}{5}x + \sqrt{7}$
 - (d) $x^2 + y^2 = 1$
 - (e) $x = f(x)^3$
 - (f) f(x) = cos(x)
 - (g) $x = f(x)^2$
 - (h)

X	f(x)
1	1
2	1
3	2
4	3
5	5
6	8

(i)

X	f(x)
5	1
2	1
6	2
7	3
3	5
42	8
2	2

- (j)
- (k)
- (1)
- (m)

- (a) Function. D: \mathbb{R} , R: \mathbb{R}
- (b) Not a function because f(2) = 5 and f(2) = 0.
- (c) Function. D: \mathbb{R} , R: \mathbb{R}
- (d) Not a function because, for instance, if $x = 0, y = \pm 1$
- (e) Function. D: \mathbb{R} , R: \mathbb{R}
- (f) Function. D: \mathbb{R} , R:[-1,1]
- (g) Not a function because if $x = 4, f(x) = \pm 2$
- (h) Function. D: $\{1, 2, 3, 4, 5, 6\}$, R: $\{1, 2, 3, 5, 8\}$
- (i) Not a function because f(2) = 2 and f(2) = 1.
- (j) Not a function because if fails the vertical line test.
- (k) Function.
- (1) Function.
- (m) Not a function.

2. For each of the functions in 1, find the function's domain and range.

- 3. Over which parts of their domain are (e), (h), (k), and (l) increasing?
 - (e) \mathbb{R} (all of it)
 - (h) $\{1, 2, 3, 4, 5, 6\}$ (all of it)
 - (k)
 - (1)
- 4. Let f(x) be the line intersecting (-2,2) and (1,0). Find an algebraic expression for f(x).

Recall that the slope of a line is given by $\frac{(y_1-y_2)}{(x_1-x_2)}$ where (x_1,y_1) and (x_2,y_2) are points on the line. It follows that the slope of the line is $\frac{2-0}{-2-1}=-\frac{2}{3}$. Remembering that the slope of a line is m in the slope-intercept form y=mx+b, we now have $y=-\frac{2}{3}x+b$. Substituting the point (1,0) into the formula now allows us to solve for b:

$$0 = -\frac{2}{3}(1) + b$$

$$0 = -\frac{2}{3} + b$$

$$\frac{2}{3} = b$$

And thus,

$$y = -\frac{2}{3}x + \frac{2}{3}$$

5. Sketch the graphs of $f(x) = x^3$, $f(x) = x^3 - 1$, and $f(x) = x^3 + 1$. Note how the graph changed.

6. Define $f(x) = x^2$. Sketch f(x), f(2x), and f(x+4). Note how the graph changed.

7. Generalize your observations from 5 and 6 for f(ax), f(x+a), and f(x)+a where a is a real number. f(ax) either stretches or shrinks the graph vertically depending on whether a>1 or 0>a<1. If a<0, f(ax) is mirrored across the y-axis and stretched or shrunk as before.

f(x+a) shifts the graph a units along the x-axis.

f(x) + a shifts the graph a units along the y-axis.