1. The graph of \(f \) has a horizontal tangent precisely when \(f'(x) = 0 \). Since \(f'(x) = 1 - 2 \cos(x) \), this happens when \(1 - 2 \cos(x) = 0 \), i.e. \(\cos(x) = 1/2 \). The values of \(x \) which satisfy this are \(x = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi \), for \(n \in \mathbb{Z} \).

2. We have \(y' = 10(1 + 3x)^3(3) \) by the Chain Rule, so \(y'(0) = 10(1 + 3 \cdot 0)^3(3) = 30 \). The equation of the tangent line is \(y - 1 = 30(x - 0) \), or \(y = 30x + 1 \).

3. Taking derivatives implicitly yields
\[
\frac{1}{2\sqrt{xy}} \cdot \frac{d}{dx} [xy] = \frac{d}{dx} [x^2y] \\
\frac{1}{2\sqrt{xy}} (y + x \frac{dy}{dx}) = 2xy + x^2 \frac{dy}{dx} \\
y + x \frac{dy}{dx} = 2\sqrt{xy}(2xy + x^2 \frac{dy}{dx}) \\
(x - 2x^2 \sqrt{xy}) \frac{dy}{dx} = 4(xy)^{3/2} - y \\
\frac{dy}{dx} = \frac{4(xy)^{3/2} - y}{x - 2x^2 \sqrt{xy}}
\]

4. Notice \(y = \frac{x}{2x - 1} = \frac{1}{2} \left(\frac{2x}{2x - 1} \right) = \frac{1}{2} \left(\frac{2x - 1 + 1}{2x - 1} \right) = \frac{1}{2} \left(1 + \frac{1}{2x - 1} \right) \). Therefore \(y' = -(2x - 1)^{-2}, y'' = 4(2x - 1)^{-3}, y''' = -24(2x - 1)^{-4} \).

5. By the Chain Rule,
\[
\frac{d}{dx} [\ln(\ln(\ln(x)))] = \frac{1}{\ln(\ln(x))} \frac{d}{dx} [\ln(\ln(x))] \\
= \frac{1}{\ln(\ln(x))} \frac{1}{\ln(x)} \frac{d}{dx} [\ln(x)] \\
= \frac{1}{\ln(\ln(x)) \cdot \ln(x)} \frac{1}{\ln(x)} \frac{d}{dx} [\ln(x)] \\
= \frac{1}{x \cdot \ln x \cdot \ln(\ln(x)) \cdot \ln(\ln(x))}
\]

6. By the Product Rule, \(\frac{d}{dx} [\sinh(x) \tanh(x)] = \frac{d}{dx} [\sinh(x)] \tanh(x) + \sinh(x) \frac{d}{dx} [\tanh(x)] = \cosh(x) \tanh(x) + \sinh(x) \text{sech}^2(x) = \sinh(x)(1 + \text{sech}^2(x)) \).

7. Let \(f(x) = \sqrt{x} \), and \(a = 100 \). Then \(f(a) = 10 \), and \(f'(a) = \frac{1}{2\sqrt{100}} = \frac{1}{20} \), so the linear approximation to \(f \) at \(a \) is \(L(x) = f(a) + f'(a)(x - a) = 10 + \frac{1}{20}(x - 100) \). Since \(99.8 \approx 100 \), \(\sqrt{99.8} = f(99.8) \approx L(99.8) = 10 + \frac{1}{20}(99.8 - 100) = 10 + \frac{1}{20}(-0.2) = 10 - 0.01 = 9.99 \).

Alternative approach (with differentials): For \(f(x) \) as above, we have \(dy = f'(x)dx = \frac{dx}{2\sqrt{x}} \).

For \(a = 100, x = 99.8 \), we have \(dx = \Delta x = -0.2 \), so \(\sqrt{99.8} = \sqrt{100} + \Delta y \approx 10 + dy = 10 + \frac{-0.2}{2\sqrt{100}} = 9.99 \).
8). We first find the critical numbers of \(f \). Since \(f'(x) = 3x^2 - 3 \), \(f'(x) = 0 \) when \(x = 1 \) or \(x = -1 \). As we only consider values in \([0, 3]\), the only critical number we check is \(x = 1 \). Evaluating at the critical number and the endpoints, we find \(f(0) = 1 \), \(f(1) = -1 \), \(f(3) = 19 \), so the absolute minimum is \(-1\) and the absolute maximum is \(19\).

9). We compute \(f'(x) = \frac{1}{3x^{2/3}} - \frac{2}{3x^{1/3}} \). \(f' \) is undefined for \(x = 0 \), and is 0 when \(\frac{1}{3x^{2/3}} = \frac{2}{3x^{1/3}} \) iff \(x^{1/3} = 2x^{2/3} \) if \(x = 8x^2 \) if \(x = 0, 1/8 \). The critical numbers are thus \(0, 1/8 \).

10). As \(f \) is a polynomial, it is continuous on \([0, 4]\) and differentiable on \((0, 4)\). Also \(f(0) = 1 = f(4) \), so \(f \) satisfies the hypotheses of Rolle's Theorem on \([0, 4]\). The conclusion is then that there exists at least one value \(c \) in \((0, 4)\) with \(f'(c) = 0 \). We have \(f'(x) = 2x - 4 \), which is 0 precisely when \(c = 2 \).

11). \(f'(x) = 2xe^x + e^x x^2 = xe^x(2 + x) \), so \(f' = 0 \) when \(x = 0 \), \(-2 \). We see that \(f'(x) < 0 \) for \(-2 < x < 0 \) (e.g., substitute \(x = -1 \)), and \(f'(x) > 0 \) when \(x > 0 \) or \(x < -2 \). So by the First Derivative Test, \((-2, 4/e^2)\) is a local maximum and \((0, 0)\) is a local minimum for \(f \), and \(f \) is increasing on \((-\infty, -2) \cup (0, \infty)\) and decreasing on \((-2, 0)\).

12). Since \(e^x - 1 - x \big|_{x=0} = 0 = x^2 \big|_{x=0} \), we may use L'Hospital's Rule (0/0 indeterminate form) to evaluate the limit. We have \(\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} \) if the latter limit exists. Again, since \(e^x - 1 \big|_{x=0} = 0 = 2x \big|_{x=0} \), we apply L'Hospital's Rule again to conclude that \(\lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2} \). Thus the original limit is \(\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2} \).

13). Notice \(\sin(x), \sinh(x) \) are continuous functions on \(\mathbb{R} \), and \(\sin(0) = 0 = \sinh(0) \). Thus we substitute \(x = 0 \) to obtain \(\lim_{x \to 0} \frac{\sin(x)}{\sinh(x) + 1} = 0 + 1 = 0 \).

14). Domain: \(f \) is undefined when \(1 + \cos(x) = 0 \), which occurs when \(x = (2n + 1)\pi \), for \(n \in \mathbb{Z} \). Thus the domain of \(f \) is \(\{x \in \mathbb{R} \mid x \neq (2n + 1)\pi, n \in \mathbb{Z}\} \).

Local Extrema: \(f'(x) = \frac{(1 + \cos(x))(\cos(x)) - \sin(x)(-\sin(x))}{(1 + \cos(x))^2} = \frac{\cos(x) + 1}{(1 + \cos(x))^2} \).

This is always \(> 0 \), and is undefined when \(1 + \cos(x) = 0 \), precisely where \(f \) is undefined. Thus \(f \) is always increasing, and has no local maxima or minima.

Behavior at infinity: Both \(\cos(x), \sin(x) \) are periodic of period \(2\pi \), so \(f \) is also periodic with the same period. Also, \(\sin(x) \) is odd and \(1 + \cos(x) \) is even, so \(f \) is odd. Thus the graph of \(f \) is just obtained by horizontal translates of its restriction to \([-\pi, \pi]\). \(f \) also has vertical asymptotes at \(x = (2n + 1)\pi \), \(n \in \mathbb{Z} \).

Zeros: \(f \) has zeros where it is defined and \(\sin(x) = 0 \), i.e. when \(x = 2n\pi \), \(n \in \mathbb{Z} \).

Behavior at 0: As seen above, \(f \) has a root at 0, and is continuous at \(0 \) (and increasing in a neighborhood of \(0 \)).

15). Domain: \(\{x \in \mathbb{R} \mid x > 0\} \) (we only look at \(x > 0 \))

Local Extrema: \(f(x) = e^{\ln(x)} \Rightarrow f'(x) = e^{\ln(x)} \left(1 - \ln(x)\right) = \frac{x^{1/2}(1-\ln(x))}{x^2} \). Thus \(f' = 0 \) when \(x = e \). For \(0 < x < e \), \(f'(x) > 0 \), and for \(x > e \), \(f'(x) < 0 \). Thus \(f \) has a local max at \((e, e^{1/e})\), is increasing on \((0, e)\), and decreasing on \((e, \infty)\).

Zeros: \(f(x) = e^{\ln(x)} \) is never 0 for \(x > 0 \).

Behavior at \(\infty \): \(\lim_{x \to \infty} \frac{\ln(x)}{x} = 0 \), so \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^{\ln(x)} = e^0 = 1 \).

Behavior at 0: Substituting 0 for \(x \) gives the non-indeterminate form \(0^\infty = 0 \), so \(f(0) = 0 \).