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Abstract. This note points out that Rademacher’s formula for k-color partitions, 1 ≤ k ≤ 24 follows from

the duality between nearly-holomorphic modular forms of weight −k/2 and 2 + k/2.

1. Introduction

Let η(τ) = q1/24
∏∞
n=1(1−qn), q = e2πiτ , τ ∈ H = {x+ iy : y > 0} denote Dedekind’s eta function, which

is a modular form of weight 1/2. More precisely, let

Γ̃ = Mp2(Z) =
{

(

(
a b
c d

)
,
√
cτ + d) : a, b, c, d ∈ Z, ad− bc = 1

}
be the metaplectic group, generated by S = (

(
0 −1
1 0

)
,
√
τ) and T = (

(
1 1
0 1

)
, 1), where

√
τ ∈ H for all

τ ∈ H. Then η transforms by

η(M · τ) = χ(M)
√
cτ + d · η(τ), M = (

(
a b
c d

)
,
√
cτ + d) ∈Mp2(Z)

for the eta character χ : Mp2(Z)→ C× which is determined by χ(S) = e−πi/4 and χ(T ) = eπi/12. Closed
formulas are known for χ(M) (see for example [3], section 6). η(τ) also has an interpretation as a vector-
valued modular form for a Weil representation, as remarked in [6], section 3.2.

The Fourier coefficients of η−1 are very interesting:

η(τ)−1 = q−1/24
∞∑
n=0

p(n)qn,

where p(n) is the partition number that counts the number of ways to write n as an unordered sum of
positive integers (and p(0) = 1 by convention). More generally,

η(τ)−k = q−k/24
∞∑
n=0

pk(n)qn

where pk(n) counts k-color partitions. The modularity of η is a powerful tool in the study of partitions.

For example, Poisson summation (and some work) shows that the series q1/24
∑∞
k=−∞(−1)kq(3k2−k)/2 is

modular of the same weight and character and Euler’s pentagonal number theorem

η(τ) = q1/24
∞∑

k=−∞

(−1)kq(3k2−k)/2

follows after comparing only the coefficients of q1/24 on both sides, giving the famous recursive formula for
p(n). A considerably deeper result of Bruinier and Ono [6] finds a finite algebraic formula for p(n); these
are expressed as traces of singular moduli of a distinguished weak Maass form of level 6. For purposes of
computation the most important result remains the Hardy-Ramanujan-Rademacher formula:
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Theorem 1 (Rademacher).

p(n) =
1

π
√

2

∞∑
c=1

√
cAc(n)

d

dn

[ 1√
n− 1/24

sinh
(π
c

√
2

3
(n− 1/24)

]
.

Here Ac(n) is a Kloosterman sum (see below). This series converges rapidly and is the basis of modern
algorithms for computing p(n) (see e.g. [8], section 56.13).

Rademacher’s original proof uses a sophisticated argument that involves integration over a contour made
from Ford circles ([11], lectures 16-19). More recently a different point of view uses the observation of Hejhal
([9], appendix D) that negative-weight modular forms can be studied using real-analytic Maass-Poincaré se-
ries (see also [5], sect. 6.3). There are several real-analytic proofs: for example, [7] writes η−1 as a modified
Poincaré series of weight −1/2, while [2] constructs a weight 5/2 mock modular form with η−1 as its shadow.

In this note we point out a short, holomorphic proof of Rademacher’s formula that uses the Fourier
expansion of usual Poincaré series and the fact that any nearly-holomorphic weight two modular form has
constant term 0. This is essentially Zagier duality [12] which is now a standard technique. The application
to Rademacher’s formula is not surprising and is likely known to experts, but it does not seem to have been
written down explicitly and it may have some expository value.

2. Review of Poincaré series

The Fourier expansion of Poincaré series is a classical computation ([10], eqs. 10,11). For the reader’s
convenience we review this computation in the case of Poincaré series for the eta character χ.

Let Γ∞ ⊆ Γ̃ = Mp2(Z) denote the subgroup generated by T and S2 = (−I, i) and fix k ∈ 1
2Z, k ≥ 5/2.

The cosets M ∈ Γ∞\Γ̃ correspond bijectively to the pairs of coprime integers (0, 1) and (c, d), c > 0 that

make up the bottom row of a representative of M ; since S4 ∈ Γ̃ we can (and we do) always choose the branch
of
√
cτ + d with re(

√
cτ + d) > 0 for all τ ∈ H. We use Petersson’s slash notation

f |k,χlM(τ) = (cτ + d)−kχ(M)−lf(M · τ), M = (M,
√
cτ + d) ∈ Γ̃.

If m ∈ 1
24Z satisfies k − 12m ∈ 2Z, then qm = e2πimτ is invariant under |k,χ24mT and |k,χ24mS2 and so the

Poincaré series of index m,

Pk,m(τ) =
∑

M∈Γ∞\Γ̃

qm
∣∣∣
k,χ24m

M,

is well-defined and is modular of weight k with multiplier χ24m. This transforms under T by

Pk,m(τ + 1) = χ(T )24mPk,m(τ) = e2πimPk,m(τ)

and therefore has a Fourier series representation Pk,m(τ) =
∑
n∈Z+m anq

n. We compute the coefficients an
with some abuse of notation:

an =

∫ 1

0

Pk,m(τ)e−2πinτ dx, (τ = x+ iy, y > 0 fixed)

=
∑
c,d

χ(M)−24m

∫ 1

0

(cτ + d)−ke2πi(m aτ+b
cτ+d−nτ) dx

= δm,n︸︷︷︸
(c=0,d=1)

+

∞∑
c=1

∑
d∈Z

gcd(c,d)=1

χ(M)−24m

∫ 1

0

(cτ + d)−ke2πi(m aτ+b
cτ+d−nτ) dx

= δm,n +

∞∑
c=1

∑
d∈(Z/cZ)×

χ(M)−24me2πima+ndc

∫ ∞
−∞

(cτ + d)−ke2πim( aτ+bcτ+d−
a
c )−n(τ+ d

c ) dx

= δm,n +

∞∑
c=1

c−k
∑

d∈(Z/cZ)×

χ(M)−24me2πima+ndc

∫ ∞
−∞

τ−ke−2πi(nτ+m/c2τ) dx (τ 7→ τ − d

c
).
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Here χ(M) is not well-defined on cosets M ∈ Γ∞\Γ̃, but χ(M)−24m(cτ + d)−ke2πim aτ+b
cτ+d is well-defined;

similarly, having fixed c > 0 and the branch of
√
cτ + d, the expression χ(M)−24me2πima+ndc is well-defined

and depends only on d mod c (as it remains the same after replacing M by either TM or MT ).

Suppose m 6= 0. If n ≤ 0 then the integral
∫
R+α

τ−ke−2πi(nτ+m/c2τ) dτ is holomorphic as a function of

α on the upper half-plane and is constant by the identity principle (it is constant as α varies on horizontal
lines). Setting α = i∞ shows that it is zero and therefore an = δm,n. If n > 0 then one can deform R + iy
to a keyhole contour −γ encircling the negative real axis (the contour will be oriented negatively) and use
Schläfli’s integral

Jν−1(z) =
1

2πi

∫
γ

w−νe(z/2)(w−w−1) dw

for the Bessel J-function (set t = wz
2 in [1, Eq. 10.9.19]) to see that∫ ∞

−∞
τ−ke−2πi(nτ+m/c2τ) dx = −(2πi)ck−1(−i

√
n/m)k−1Jk−1(4π

√
mn/c).

(Here we use the convention (−i)1/2 = e−πi/4.) Finally, since the modified Bessel functions are given by
Ik−1(w) = i1−kJk−1(iw), we conclude:

Lemma 2. If m > 0 and k − 12m ∈ 2Z, then Pk,m has the Fourier series

Pk,m(τ) = qm +
∑

n∈(Z+m)>0

anq
n, an = 2π(−i)k(n/m)

k−1
2

∞∑
c=1

A(m,n, c)

c
Jk−1(4π

√
mn/c)

and if k + 12m ∈ 2Z, then Pk,−m has the Fourier series

Pk,−m(τ) = q−m +
∑

n∈(Z−m)>0

anq
n, an = 2π(−i)k(n/m)

k−1
2

∞∑
c=1

A(−m,n, c)
c

Ik−1(4π
√
mn/c),

where we use A(m,n, c) to denote the Kloosterman sum

A(m,n, c) =
∑

d∈(Z/cZ)×

χ(M)−24me2πima+ndc , c ∈ N, m, n ∈ 1

24
Z with n ∈ Z +m.

The Kloosterman sum Ac(n) of theorem 1 is e−πi/4A(−n+1/24, 1/24, c) in this notation. Using the closed
formula for χ(M) one can also express Ac(n) in terms of Dedekind sums (cf. [7], eqs. 3,4).

3. Proof of Rademacher’s formula

Theorem 3. Let k ≤ 24. Then the number of k-color partitions of m ∈ N is

pk(m) = −ak/24,

where ak/24 is the coefficient of qk/24 in the Poincaré series Pk/2+2,−m+k/24 as computed in lemma 2.

Proof. This is essentially the proof of Zagier duality attributed to Kaneko in [12]. Pk/2+2,−m+k/24 · η−k is
a meromorphic modular form of weight two, level one and trivial multiplier with a unique pole at ∞. By
subtracting off derivatives of the Hecke images J |Tn where J(τ) = j(τ)− 744 = q−1 +O(q) is the level one
Hauptmodul, one can remove the principal part of Pk/2+2,−m+k/24 ·η−k. This leaves a holomorphic modular
form of weight two which is therefore zero. Since the derivatives (J |Tn)′ have constant term zero,

Pk/2+2,−m+k/24(τ) · η(τ)−k =
(
q−m+k/24 + ak/24q

k/24 + ...
)( ∞∑

n=0

pk(n)qn−k/24
)

also has constant term 0 = pk(m) + ak/24. �
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Alternatively, the vanishing of the constant term above follows from the residue theorem on Γ\H applied
to the invariant differential Pk/2+2,−m+k/24 · η−k dτ . This use of the residue theorem can also be interpreted
as the Serre duality pairing ([4], section 3).

The traditional form of Rademacher’s formula as in theorem 1 follows after expressing modified Bessel

functions of half-integer order by elementary functions, here I3/2(x) =
√

2x
π

d
dx (sinh(x)/x).

Acknowledgments: I thank Ken Ono for his encouragement to write out this argument in detail.

Note added v2: I have learned that this proof was obtained previously by W. Pribitkin and was pre-
sented in an AMS Special Session at JMM 2017, Atlanta.
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