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Abstract. We give a general formula for generators of the NL-cone, the cone of
effective linear combinations of irreducible components of Noether-Lefschetz divisors,
on an orthogonal modular variety. We then fully describe the NL-cone and its extremal
rays in the cases of moduli spaces of polarized K3 surfaces and hyperkähler manifolds
of known deformation type for low degree polarizations. Moreover, we exhibit explicit
divisors in the boundary of NL-cones for polarizations of arbitrarily large degrees.
Additionally, we study the NL-positivity of the canonical class for these modular
varieties. As a consequence, we obtain uniruledness results for moduli spaces of
primitively polarized hyperkähler manifolds of OG6 and Kumn-type. Finally, we show
that any family of polarized hyperkähler fourfolds of Kum2-type with polarization of
degree 2 and divisibility 2 over a projective base is isotrivial.
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1. Introduction

In the classical study of moduli spaces of curves, modular divisors, namely divisors
parametrizing curves satisfying special properties play an important role. For instance,

the calculation of the class of Brill–Noether divisors Md

g,r parametrizing curves C of
genus g that admit a grd when g− (r+1)(g− d+ r) = −1 was an essential step in Harris,
Mumford, Eisenbud’s proof that M g is of general type for g ≥ 24 [HM82,EH87].

In the case of the moduli space F2d of quasi-polarized K3 surfaces of degree 2d, the
most natural source of modular divisors is Noether–Lefschetz divisors. A very general
point (S,H) ∈ F2d has Picard group Pic(S) = ZH and so the locus in F2d where
ρ(S) ≥ 2 is a countable union of divisors, called Noether–Lefschetz divisors (or NL
divisors). Concretely, a Noether–Lefschetz divisor Dh,a on F2d is the reduced divisor
obtained by taking the closure of the locus of points (S,H) ∈ F2d for which there exists
a class β ∈ Pic(S), not proportional to H, with β2 = 2h− 2 and β.H = a.

Heegner divisors generalize Noether–Lefschetz divisors to arbitrary orthogonal modular
varietiesD/Γ by viewing Noether–Lefshetz divisors as images of hyperplane arrangements
in D under the modular projection π : D −→ D

/
Γ. More precisely, let Λ be an even

lattice of signature (2, n) with bilinear form ⟨·, ·⟩ (which extends to ΛC) and DΛ the Type
IV domain given by one of the two components (exchanged by complex conjugation) of{

[Z] ∈ P (ΛC)
∣∣⟨Z,Z⟩ = 0, ⟨Z,Z⟩ > 0

}
.

We assume that Γ is a finite index subgroup of Õ+ (Λ), the group of orientation
preserving isomorphisms of Λ acting trivially on the discriminant group D(Λ2d) = Λ∨

2d

/
Λ

and consider the quotient DΛ/Γ. The fundamental example to have in mind is when

Λ = Λ2d = U⊕2 ⊕ E8(−1)⊕2 ⊕ Zℓ, with ⟨ℓ, ℓ⟩ = −2d,

and Γ = Õ+ (Λ2d). Then F2d = DΛ2d

/
Õ+ (Λ2d) is a coarse moduli space for primitively

quasi-polarized K3 surfaces of degree 2d.

For v ∈ ΛQ, one considers the hyperplane section Dv = v⊥ ∩ DΛ. With the quadratic

form Q(v) = ⟨v,v⟩
2

, for a fixed class µ+ Λ ∈ D(Λ) and m ∈ Q(µ) + Z non-positive, the
cycle

∑
v∈µ+Λ
Q(v)=m

Dv is Γ-invariant and descends to a Q-Cartier divisor Hm,µ on DΛ/Γ,

called a Heegner divisor. In general, Hm,µ is neither reduced, nor irreducible and its
irreducible components, called primitive Heegner divisors, are denoted P∆,δ. In the K3
case, Heegner divisors are related to Noether–Lefschetz divisors via Dh,a = H−m,µ if d ̸ |a
and Dh,a =

1
2
H−m,µ if d | a, where m = a2

4d
− (h− 1) and µ = aℓ∗ for ℓ∗ =

ℓ
2d

∈ D(Λ2d)
the standard generator [MP13, Lemma 3].

Maulik–Pandharipande conjectured [MP13, Conjecture 3] that the rational Picard
group PicQ(F2d) is generated by Noether–Lefschetz divisors Dh,a. Bergeron–Li–Millson–
Moeglin proved a generalization of Maulik–Panharipande’s conjecture, showing that,
in fact, the Picard group with rational coefficients PicQ(DΛ/Γ) of any such orthogonal
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modular variety with n ≥ 3 is generated by Heegner divisors [BLMM17]. The rank of
PicQ(DΛ/Γ) was computed by Bruinier in [Bru02b].

An important invariant of an algebraic variety X is its cone of pseudo-effective divisors
Eff(X), which governs much of the birational geometry of X. The cone Eff(X) is defined
as the closure of the cone of effective R-divisors on X. In general, it can be quite difficult
to determine when Eff(X) is finitely-generated, let alone compute it explicitly.

In the case of an orthogonal modular variety DΛ/Γ, a natural subcone of Eff(DΛ/Γ)
is the NL-cone EffNL (DΛ/Γ) of effective R-linear combinations of primitive Heegner
divisors on DΛ/Γ. The NL-cone contains the subcone Eff

H (DΛ/Γ) generated by the (non-
primitive) Heegner divisors on DΛ/Γ. The study of NL-cones was initiated in [Pet15], in
the case DΛ/Γ = F2d, where Peterson raised the following questions [Pet15, Section 4.5]:

(1) Is EffNL (F2d) finitely-generated (polyhedral)?

(2) Can we compute generators for EffNL (F2d)?

(3) Is there an effective divisor not in EffNL (F2d)?

Bruinier–Möller [BM19] answered the first question affirmatively, showing that for a

general orthogonal modular variety X = DΛ

/
Õ+ (Λ) such that Λ is of signature (2, n)

and splits off two copies of the hyperbolic plane, the cone EffNL (X) is always polyhedral.

In this paper, we tackle Question (2) for X = DΛ

/
Õ+ (Λ) under the same assumptions.

We consider the Q-vector space Sk,Λ of vector-valued cusp forms of weight k = 1 + n
2

with respect to the Weil representation and the coefficient extraction functionals in S∨
k,Λ

cm,µ : Sk,Λ −→ Q,
∑

am,µq
meµ 7→ am,µ.

Let b ≥ ⌈k/12⌉ be an integer such that the set of cm,µ with 0 < m ≤ b and µ ∈ D(Λ)
generates S∨

k,Λ. Then, we consider the weakly holomorphic modular form

(1) ∆−b · E(2−k)+12b,Λ(−1) =
∑
(m,µ)
−b≤m

αm,µq
meµ,

where ∆(τ) is the scalar-valued discriminant modular form and E(2−k)+12b,Λ(−1) is the
Eisenstein series of weight (2− k) + 12b associated to Λ(−1) (see Equation (5)).

Our first result is the following, with the explicit bounds in Theorems 3.4 and 3.6.

Theorem 1.1. Let Λ be an even lattice of signature (2, n) with n ≥ 3 and X =

DΛ

/
Õ+(Λ) its modular variety. Fixing b as above, there are explicit bounds Ξ and Ω,

depending on k, the discriminant of Λ, and the αm,µ with −b ≤ m ≤ 0 in (1) , such that

(1) The cone EffH (X) is generated by all H−m,µ with 0 ≤ m ≤ Ξ, when Λ splits off
one copy of the hyperbolic plane

(2) The cone EffNL (X) is generated by all P−∆,δ with 0 ≤ ∆ ≤ Ω, when Λ splits off
two copies of the hyperbolic plane.



4 IGNACIO BARROS, PIETRO BERI, LAURE FLAPAN, AND BRANDON WILLIAMS

Theorem 1.1 together with its implementation in Sage package [Wila] enables the
computation of EffNL (X) given any such Λ (see Section 1.1 below).

The proof of Theorem 1.1 relies on the relationship between Heegner divisors on X
and vector-valued modular forms with respect to the Weil representation for Λ. In
[BM19] the polyhedrality of the NL-cone is established by showing that the Hodge class
λ lies on the interior of the NL-cone, and the rays P∆,δQ≥0 converge to λQ≥0 as ∆
grows. Establishing a concrete list of generators of EffNL (X) amounts to making the
convergence rate explicit which translates into bounding explicitly the growth of the
coefficients of the relevant vector-valued modular forms (see Section 3). For vector-valued
cusp forms of half-integer weight, despite the considerable literature on bounds for the
growth of Fourier coefficients, we are unaware of a general bound with explicit constants.
Using Poincaré series and Kloosterman sums we derive weak, yet explicit, bounds that
suffice for our purposes.

1.1. Explicit Computations of EffNL (X). We then focus on cases where the quotient

X = DΛ

/
Õ+ (Λ) arises as (a finite cover of) a partial compactification of a coarse moduli

space of polarized K3 surfaces or hyperkähler manifolds. We give explicit formulas for
EffNL (X) in terms of generating rays for low-degree polarizations: see Table 1 for the
case of (quasi)-polarized K3 surfaces, Tables 4 and 5 for the case of hyperkähler fourfolds

of K3[2]-type, and Theorem 7.8 for the case of Kum2-type hyperkähler manifolds. In the
case of F2d, the calculations in Table 1 confirm (aside from one additional generator in
the case d = 13) the predictions in [Pet15] who computed, for d ≤ 18, the cone generated
by the set of 8d generators P∆,δ, for δ ∈ D(Λ),∆ ∈ Q(δ) + s with s = 0, 1, 2, 3, and
conjectured that this cone coincides with EffNL (F2d).

In the case of hyperkähler fourfolds of K3[2]-type we also record the NL-positivity of
the canonical class, noting that KX lies inside EffNL (X) as soon as the polarization
degree exceeds the lowest possible.

Note that a negative answer to Question (3) above would imply, via [BM19], the
polyhedrality of Eff (X). In contrast, a positive answer, would arise from exhibiting an
effective divisor which is not an effective linear combination of primitive Heegner divisors.
One possible approach in this direction would be to exhibit a big divisor lying on the
boundary of EffNL (X). For this it is helpful to describe the boundary of EffNL (X).

1.2. Boundary rays for arbitrarily high discriminant. While the Sage package
[Wila] enables the computation of generating rays of EffNL (X) for fixed Λ, the approach
becomes computationally infeasible as the discriminant of the lattice Λ grows large. In
Section 4, we study the behavior of the NL cones EffNL (DΛ/Γ) in relation to finite
maps ϕ : D/Γ′ → D/Γ induced by a finite index embeddings Λ′ ⊂ Λ. We show in
Proposition 4.2 that the pullback along ϕ preserves both the boundary and the interior
of EffNL (DΛ/Γ). In particular if Z is an element of ∂EffNL

(
D
/
Γ
)
, then every irreducible

component of ϕ∗Z is contained in ∂EffNL
(
D
/
Γ′). Moreover, we provide an explicit

formula in Proposition 4.5 for the pullback of a (non-primitive) Heegner divisor under
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such a map. In combination with the explicit computations discussed in 1.1, this enables
one to exhibit explicit boundary rays of EffNL (X) as discriminant of the lattice Λ grows
arbitrarily large.

We carry this out in more detail in the case X = F2d. There, for any r > 0, the
embedding Λ2dr2 ↪→ Λ2d given by ℓ′ 7→ rℓ induces a finite map ϕ : F2dr2 → F2d. In
Proposition 5.3, we give an explicit formula for the support of the pullback ϕ∗Pm,µ of a
primitive Heegner Pm,µ ∈ EffNL (F2d).

Example 1.2. In Table 2 we compute the pullback under ϕ : F2r2 → F2 of the two
generating rays P−1,0 and P− 1

4
,ℓ∗ of EffNL (F2) when 2 ≤ r ≤ 8. For instance when

r = 8, we obtain that the components of ϕ∗P−1,0 are

P−1,0, P−1,16ℓ′∗ , P−1,32ℓ′∗ , P−1,48ℓ′∗ , P−1,64ℓ′∗ , P− 1
9
,4ℓ′∗
.

This singles out some faces of the boundary of EffNL (F128). On the other hand, the
unigonal divisor P− 1

4
,ℓ∗ in F2 is known [Sha80] to be extremal (in the boundary of the

effective cone) and thus all components of its pullback under ϕ lie in the boundary of
Eff (F2r2). Thus our method produces explicit extremal faces for large d.

It is natural to ask whether in the K3 setting P−1,0 is always in the boundary of the
NL cone and if there is an example where it is extremal. Note that for moduli spaces of
higher dimensional hyperkähler varieties P−1,0 can be in the interior of the NL cone, see
Theorem 7.8. The formula given in Proposition 5.3 together with the computations in
Table 1 allow us for instance to conclude the following.

Theorem 1.3. The primitive Heegner divisor P−1,0 lies in the boundary of EffNL (F2dr2)
for all 1 ≤ d ≤ 20 and all r > 0.

1.3. Uniruledness results. Mukai in a celebrated series of papers [Muk88,Muk92,
Muk06,Muk10,Muk16] constructed unirational parameterizations of F2d for low-degrees.
This has been recently improved by Farkas–Verra in [FV18,FV21]. Much less is known
for higher-dimensional hyperkähler varieties, where known unirational parameterizations
are available only for a few cases, all of them for moduli spaces of hyperkähler varieties
of K3[n]-type, cf. [BD85,O’G06, IR01, IR07,DV10,BLM+21]. Constructing unirational
parameterizations in low degree for moduli spaces of hyperkähler varieties of generalized
Kummer and OG6-types is a challenge where, as far as we know, no single explicit
construction is known. Here we consider the simpler problem of establishing uniruledness.

In Section 7, we consider the moduli spaces Mγ
OG6,2d and Mγ

Kumn,2d
, which are

the period domain partial compactifications of the moduli spaces
(
Mγ

OG6,2d

)◦
and(

Mγ
Kumn,2d

)◦
parameterizing primitively polarized hyperkähler sixfolds of OG6-type

respectively 2n-folds of Kumn-type with a primitive polarization of degree 2d and
divisibility γ. We remark that the moduli space Mγ

OG6,2d is always irreducible and in the
case γ = 2 it is non-empty only when d ≡ −1,−2 mod 4. Similarly, setting d = 1 and
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γ ∈ {1, 2}, the moduli space Mγ
Kumn,2

is irreducible and in the case γ = 2 its nonempty
only when n ≡ 2 mod 4.

Theorems 7.2 and 7.5 establish the following uniruledness results:

Theorem 1.4. The moduli space Mγ
OG6,2d is uniruled in the following cases

(i) when γ = 1 for d ≤ 12,

(ii) when γ = 2 for t ≤ 10 and t = 12 with d = 4t− 1,

(iii) when γ = 2 for t ≤ 9 and t = 11, 13 with d = 4t− 2.

The moduli spaces M1
Kumn,2

and M2
Kumn,2

are uniruled in the following cases:

(i) when γ = 1 for n ≤ 15 and n = 17, 20,

(ii) when γ = 2 for t ≤ 11 and t = 13, 15, 17, 19, where n = 4t− 2.

An immediate consequence of the work of H. Wang and the fourth author [WW21,
Theorem 5.4] together with Lemmas 7.1 and 7.4, appearing here, is the rationality of
M2

Kum2,2
and unirationality of M2

OG6,6 and M1
OG6,2.

Our approach to uniruledness is inspired by [Pet15]. The idea is to express the
canonical class of (a smoothing of a toroidal compactification of) such a quotient

M = DΛ

/
Õ+ (Λ) in terms of Heegner divisors Hm,µ. One then uses formulas of Kudla

[Kud03] and Bruinier–Kuss [BK01] expressing the intersection of these Heegner divisors
with the power λdimM−1 of the Hodge class λ in terms of coefficients of an Eisenstein
series in order to show that the intersection of the canonical class with λdimM−1 is
negative. Since λdimM−1 is a covering curve (in particular nef) the canonical class is
then not pseudo-effective and uniruledness follows from [BDPP13].

Lastly as part of Theorem 7.8 we establish

Theorem 1.5. The moduli space
(
M2

Kum2,2

)◦
parameterizing polarized hyperkähler

fourfolds with polarization of degree 2 and divisibility 2 is quasi-affine.

Motivated by the questions treated in [BKPSB98,DM22] (see [BKPSB98, Theorem
1.3]) an immediate consequence is:

Corollary 1.6. Any family f : X −→ B over a projective base B of polarized hyperkähler
fourfold deformation equivalent to Kum2 with polarization of degree 2 and divisibility 2
is isotrivial.

Acknowledgements. This paper benefited from helpful discussions and correspondence
with the following people who we gratefully acknowledge: Daniele Agostini, Emma
Brakkee, Jan Hendrik Bruinier, Yagna Dutta, Gabi Farkas, Paul Kiefer, Giovanni
Mongardi, Gregory Sankaran, Preston Wake, and Riccardo Zuffetti.
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2. Preliminaries

Let Λ be an even lattice of signature (2, n) with bilinear form given by ⟨·, ·⟩. The
bilinear form extends to ΛC and we call DΛ one of the two components of{

[Z] ∈ P (ΛC)
∣∣⟨Z,Z⟩ = 0, ⟨Z,Z⟩ > 0

}
.

Further, we denote by Γ a finite index subgroup of the group O+ (Λ) of automorphisms
of Λ fixing the component DΛ. The quotient of DΛ by Γ is often referred to as an
orthogonal modular variety . It is a quasi-projective variety [BB66] that for various
choices of lattice Λ and arithmetic groups Γ turns out to be a partial compactification
of a coarse moduli space of polarized varieties. The first case of interest in this paper is
when

Λ2d = U⊕2 ⊕ E8(−1)⊕2 ⊕ Zℓ, with ⟨ℓ, ℓ⟩ = −2d

and when the arithmetic group Γ = Õ+ (Λ) is the group of orientation preserving
isomorphisms of Λ acting trivially on the discriminant group D(Λ) = Λ∨/Λ. The
quotient

F2d = DΛ2d

/
Õ+ (Λ2d)

is a coarse moduli space for quasi-polarized K3 surfaces (S,H), i.e., where H is primitive,
big, and nef, of degree H2 = 2d.

As mentioned in the introduction, a very general point (S,H) ∈ F2d has Picard
group Pic(S) = ZH, and a large source of geometric divisors comes from imposing the
condition that the Picard rank jumps. These are Noether–Lefschetz divisors. There
are different characterizations of these divisors: by keeping track of a rank two lattice
embedding L ↪→ Pic(S), by imposing the existence of an extra class β ∈ Pic(S) with
fixed intersections (β2, β ·H) = (2h− 2, a), and by looking at images of hyperplanes in
DΛ2d

via the quotient map

π2d : DΛ2d
−→ F2d.

These are all equivalent approaches (see [MP13, Section 1 and Lemma 3]). In what
follows, we focus on the third approach.

2.1. Heegner and NL divisors. We assume Γ ⊂ Õ+(Λ). Let Q(x) = ⟨x,x⟩
2

be the
corresponding quadratic form. For fixed v ∈ Λ∨ ⊂ ΛQ, we set

Dv = v⊥ ∩ DΛ = {[Z] ∈ DΛ |⟨Z, v⟩ = 0} .

Let µ+ Λ ∈ Λ∨/Λ and m ∈ Q(µ) + Z non-positive. Then the cycle

(2)
∑

v∈µ+Λ
Q(v)=m

Dv

is Γ-invariant and descends to a Q-Cartier divisor Hm,µ called a Heegner divisor . In
general, Hm,µ is neither reduced, nor irreducible. The existence of two vectors v, v′ ∈ Λ∨
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with the same square and discriminant class for which Dv = Dv′ is a source for non-
reduced components of Hm,µ. Similarly, several Γ-orbits of elements in Λ∨ with the same
square and discriminant class give rise to several (possibly non-reduced) components.

Under the given assumption that Γ ⊂ Õ+ (Λ), all the components of Hm,µ have
multiplicity two if µ = −µ in Λ∨/Λ and all have multiplicity one otherwise. Further,
the line bundle O(−1) on DΛ ⊂ P (ΛC) admits a natural Γ-action and descends to a
Q-line bundle λ called the Hodge bundle. One declares H0,0 = −λ.
In the K3 case F2d = DΛ2d

/
Õ+ (Λ2d), Noether-Lefschetz divisors are often described

as the reduced divisor obtained by taking the closure of the locus

Dh,a ⊂ F2d

of points (S,H) for which there exists a class β ∈ Pic(S) with β2 = 2h−2 and β ·H = a.
In this case [MP13, Lemma 3], if d does not divides a:

Dh,a = H−m,µ with m =
a2

4d
− (h− 1), and µ = aℓ∗.

Here ℓ∗ =
ℓ
2d

∈ D(Λ2d) is the standard generator. If d divides a, then Dh,a =
1
2
Hm,µ. One

denotes by PicHQ (F2d) the subspace generated by all NL divisors Dh,a, or equivalently,
Heegner divisors Hm,µ. Maulik–Pandharipande conjectured [MP13, Conjecture 3] the
equality

PicHQ (F2d) = PicQ (F2d) .

This is now a theorem:

Theorem 2.1 (Theorem 1.8 in [BLMM17]). Let Λ be an even lattice of signature (2, n)

with n ≥ 3, and Γ ⊂ Õ+(Λ) a finite index subgroup. Then the rational Picard group of
DΛ

/
Γ is generated by Heegner divisors:

PicHQ
(
DΛ

/
Γ
)
= PicQ

(
DΛ

/
Γ
)
.

Note that the above theorem in particular implies that irreducible components of Hm,µ

must be linear combinations of other Heegner divisors. When Γ = Õ+ (Λ) the relation is
explicit and follows from Eichler’s criterion [GHS09, Proposition 3.3], [Son23, Proposition

2.15]: if Λ splits off two copies of the hyperbolic lattice U , then the S̃O
+
(Λ)-orbit of a

primitive element v ∈ Λ∨ is determined by Q(v) = m and v + Λ ∈ Λ∨/Λ. This leads to
the following definition (see [Pet15,BM19]). The primitive Heegner divisor P∆,δ is the
image via the Γ-quotient map π : DΛ −→ DΓ

/
Γ of the cycle

(3)
∑

v∈δ+Λ primitive
Q(v)=∆

Dv.

When Λ splits off two copies of U , and Γ = Õ+ (Λ), the divisor P∆,δ is irreducible and
reduced when δ ≠ −δ in D(Λ) and otherwise has multiplicity two. The relation between
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Heegner and primitive Heegner divisors [BM19, Equations (17) and (18)] is:

(4) Hm,µ =
∑
r∈Z>0

r2|m

∑
δ∈D(Λ)
rδ=µ

Pm
r2

,δ and P∆,δ =
∑
r∈Z>0

r2|∆

µ(r)
∑

σ∈D(Λ)
rσ=δ

H ∆
r2

,σ,

where the µ(·) in the second equation stands for the Möbius function. Here r2 | m
means exactly that there is a class δ ∈ D(Λ) such that m/r2 ∈ Q(δ) + Z.
As stated in the introduction, our main object of study is the NL-cone EffNL

(
DΛ

/
Γ
)

generated by primitive Heegner divisors, or equivalently irreducible components of
Noether-Lefshetz divisors.

2.2. Rational Picard group of orthogonal modular varieties. A recently estab-
lished key feature of our setting is that for a large collection of orthogonal modular
varieties the Q-vector space PicQ

(
Λ
/
Γ
)
can be seen as a space of vector-valued modular

forms. This is what we explain now.

Let Λ be an even lattice of signature (2, n) with quadratic form Q. The discriminant
group D(Λ) = Λ∨/Λ is a finite abelian group endowed with an induced Q

/
Z-valued

quadratic form. The group algebra C [D(Λ)] is finitely generated and we denote the
standard generators by {eµ | µ ∈ D(Λ)}. The metaplectic group Mp2(Z) is a double

cover of SL2(Z) defined as the group of pairs (A, ϕ(τ)) where A =

(
a b
c d

)
∈ SL2 (Z),

and ϕ(τ) is a choice of a square root of the function cτ+d on the upper half plane H. The
product in Mp2(Z) is given by (A1, ϕ1(τ)) · (A2, ϕ2(τ)) = (A1A2, ϕ1(A2τ)ϕ2(τ)). There
is a canonical representation of Mp2(Z) attached to Λ called the Weil representation
ρΛ : Mp2(Z) −→ GL (C [D(Λ)]). See [Bor98, Section 4] for a concrete description in
terms of the standard generators of Mp2(Z). Let k ∈ 1

2
Z. A holomorphic function

f : H −→ C [D(Λ)]

is called a modular form of weight k and type ρΛ if for all g = (A, ϕ) ∈ Mp2 (Z) and
τ ∈ H

f(Aτ) = ϕ(τ)2kρΛ(g) · f(τ).

and f is holomorphic at the cusp at ∞. Modular forms of weight k and type ρΛ form
a finite-dimensional C-vector space denoted Modk,Λ. Such a modular form f admits a
Fourier expansion centered at the cusp at infinity of the form

f =
∑

µ∈D(Λ)

∑
m∈ 1

N
Z≥0

am,µq
meµ,

where as usual q = e2πiτ . Here N is the level of Λ, that is, the smallest positive
integer such that N · Q is integral on Λ∨. Further, from [Bor99, Lemma 4.2] and
[McG03, Theorem 5.6], one can find a basis for Modk,Λ where all Fourier coefficients are
rational numbers.
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The modular form f is called a cusp form if a0,µ = 0 for all isotropic elements µ ∈ D(Λ),
i.e, the function

∑
m am,µq

m vanishes at the cusp of H. The function f is called an
almost cusp form if am,µ = 0 for all isotropic elements µ except possibly 0 ∈ D(Λ) (see
for instance [Pet15, Section 3.3]). Cusp forms and almost cusp forms form subspaces

Sk,Λ ⊂ Mod◦
k,Λ ⊂ Modk,Λ.

Let Γ̃∞ be the stabilizer in Mp2(Z) of the cusp at infinity. Assume further that 2k ≡ 2−n
mod 4. Then for every half integer k > 2 the Eisenstein series

(5) Ek,Λ(τ) =
∑

(A,ϕ)∈Γ̃∞\Mp2(Z)

ϕ(τ)2k · ρΛ(A, ϕ)−1e0 =
∑
m,µ

em,µq
meµ

is in Modk,Λ. The coefficients em,µ are rational numbers that were computed in [BK01].
As Q-vector spaces one has

Mod◦
k,Λ = QEk,Λ ⊕ Sk,Λ.

Following the notation in [Pet15,BM19], consider the coefficient extraction functionals

cm,µ : Mod◦
k,Λ −→ Q
f 7→ cm,µ(f).

where cm,µ(f) is the (m,µ)-th Fourier coefficient am,µ of f . These functionals generate(
Mod◦

k,Λ

)∨
. The key theorem that allows us to study the effective cone is the following:

Theorem 2.2 ([Bor99,McG03,Bru02a,Bru14,BLMM17]). Let Λ be an even lattice of

signature (2, n) with n ≥ 3 splitting off two copies of U , and Γ ⊂ Õ+(Λ) a finite index
subgroup. Then the map

(6) φ :
(
Mod◦

k,Λ

)∨ −→ PicQ
(
DΛ

/
Γ
)
, cm,µ 7→ H−m,µ

is an isomorphism of Q-vector spaces for k = 1 + n/2.

Remark 2.3. Under the above isomorphism φ, the Hodge class λ is identified with the
functional −c0,0 sending Ek,Λ to −1 and Sk,Λ to 0.

The fact that φ is a well-defined Q-homomorphism follows from [Bor99,McG03],
injectivity follows from [Bru02a, Theorem 0.4] and [Bru14, Theorem 1.2], and surjectivity
is Theorem 2.1.

2.3. Effective and NL cones. It was shown in [BM19] that, on the right-hand side of
(6), the functionals cm,µ converge projectively to −c0,0 as m grows. This implies that the
cone spanned by all Hm,µ is polyhedral. Using the formula (4), Bruinier–Möller moreover

show that the cone EffNL
(
DΛ

/
Õ+ (Λ)

)
generated by primitive Heegner divisors P∆,δ is

polyhedral, answering [Pet15, Question 4.5.2]. More precisely, [BM19] shows that there

is a neighborhood U of Q≥0λ strictly contained in EffNL
(
DΛ

/
Õ+ (Λ)

)
and a value ∆0
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such that for all ∆ ≥ ∆0, we have P∆,δ ∈ U . The NL-cone EffNL
(
DΛ

/
Õ+ (Λ)

)
is then

the convex hull of the divisors P∆,δ for ∆ ≤ ∆0.

Formulas for the NL cones EffNL (F2d) for low values of d were conjectured in [Pet15]
by looking at truncated Fourier coefficients of the modular forms generating Mod◦

21
2
,Λ2d

,

see [Pet15, Remark 4.7.1]. More precisely, for d ≤ 18 Peterson used (6) to compute the
cone generated by the 8d generators PQ(δ)+j,δ for δ ∈ D(Λ2d) and j ∈ {0, 1, 2, 3}. He

then conjectured that this cone coincides with EffNL (F2d) for these values of d.

Confirming these formulas for a given d requires explicitly computing the U and ∆0

described above. This has to do with finding concrete bounds analogous to Deligne’s
bound for scalar-valued Hecke eigenforms of integral weight. Once these U and m0

are computed, calculating EffNL
(
DΛ

/
Õ+ (Λ)

)
can be accomplished by computer. See

Section 3 for more details.

Let X be a normal Q-factorial quasi-projective variety with PicQ (X) a finite dimen-
sional Q-vector space. The effective cone Eff (X) is the cone in PicQ (X) generated by
all effective Q-divisors up to linear equivalence:

Eff (X) = ⟨E ∈ PicQ (X) |E is effective⟩Q≥0
.

When X is projective and h1(X,OX) = 0, then PicQ (X) coincides with the Neron-
Severi group NS(X)Q and one recovers the standard definition. The definition for
R-divisors is the same. Further, the cone is often not closed and the closure is called
the pseudo-effective cone, denoted Eff (X).

3. NL-cone computations

Throughout this section, we assume that Λ is a lattice of signature (2, n) with n ≥ 3
splitting off one copy of the hyperbolic plane. We moreover consider the half-integer
k = 1 + n/2.

As described in Section 2.3, in order to compute the NL-cone EffNL
(
DΛ

/
Õ+ (Λ)

)
for

a given lattice Λ, one needs to calculate a neighborhood U of Q≥0λ strictly contained in

EffNL
(
DΛ

/
Õ+ (Λ)

)
and an explicit value Ω such that P∆,δ ∈ U for all ∆ > Ω. Further,

as in Subsection 2.2, we view Modk,Λ and Sk,Λ as Q-vector spaces.

In order to find such an explicit Ω, we fix a rational basis {f1, . . . fM} for Sk,Λ. Let
e = Ek,Λ be the Eisenstein series defined in (5). We use the isomorphism (6) to identify
each H−m,µ with the coefficient functional cm,µ and hence a tuple

cm,µ(e, f1, . . . , fM) = (cm,µ(e), cm,µ(f1), . . . , cm,µ(fM)) ∈ QM+1.

Intuitively, asm increases, the coefficients cm,µ(e) of Ek,Λ grow more rapidly than those of
any cusp form, and therefore cm,µ(e, f1, . . . , fM ) converges projectively to (−1, 0, . . . , 0),
which corresponds to the Hodge class λ (see Remark 2.3). This convergence is proved in
[BM19, Proposition 4.5]. However to produce the required neighborhood U and bound
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Ω, we need to make this convergence quantitative: we need explicit upper bounds for
the Fourier coefficients of vector-valued cusp forms and an explicit lower bound for the
coefficients of the Eisenstein series.

The coefficients of e can be expressed in closed form [BK01] and a lower bound of the
form cm,µ(e) ≥ Ck,Λ ·mk−1, where Ck,Λ is an explicit positive constant depending only
on the lattice Λ and weight k, easily follows, cf. [BM19, Propositions 3.2 and 4.5]. As
for cusp forms, despite the considerable literature on bounds for the growth of Fourier
coefficients, we are unaware of a general bound (with explicit constants) that applies to
our situation so we derive one below. The bound we derive is only the trivial bound
O(mk/2), but this is sufficient to distinguish it from the growth of the lower bound for
cm,µ(e).

We will use the fact that the space of cusp forms Sk,Λ is spanned by Poincaré series

Pk,(m,µ)(τ) =
1

2

∑
c,d∈Z,

gcd(c,d)=1

(cτ + d)−ke2πim
aτ+b
cτ+dρΛ

((
a b
c d

))
eµ.

These are characterized through the Petersson inner product

⟨f, g⟩ :=
∫
SL2(Z)\H

∑
µ∈D(Λ)

fµ(τ)gµ(τ)y
k dx dy

y2
, f, g ∈ Sk,Λ

by the fact that they represent (up to a constant factor) the coefficient extraction
functionals: an arbitrary cusp form

(7) f(τ) =
∑

µ∈D(Λ)

∑
m∈ 1

N
Z>0

am,µq
meµ

has Fourier coefficients am,µ which can be written

(8) am,µ =
(4πm)k−1

Γ(k − 1)

〈
f, Pk,(m,µ)

〉
.

This implies that to bound the coefficients of arbitrary cusp forms, it is sufficient to
bound the growth of the “diagonal” coefficients of Poincaré series. More precisely:

Lemma 3.1. Suppose the coefficients of

Pk,(m,µ)(τ) =
∑

β∈D(Λ)

∑
n∈Q(β)+Z

cm,γ(n, β)q
neβ

satisfy a bound of the form

|cm,µ(m,µ)| ≤ C ·mA

for some positive constants A and C. Then the coefficients of every cusp form (7) satisfy
the bound

|am,µ| ≤ C̃ ·mA/2+(k−1)/2 · ∥f∥
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with constant

C̃ :=
(4π)(k−1)/2√
Γ(k − 1)

·
√
C.

Proof. From (8) it follows that the Petersson norm of Pk,(m,µ) is

∥Pk,(m,µ)∥ =
√

⟨Pk,(m,µ), Pk,(m,µ)⟩ =
√

Γ(k − 1)

(4πm)(k−1)/2
· |cm,µ(m,µ)|1/2

≤
√
C · Γ(k − 1)(4π)k/2−1/2 ·mA/2+(1−k)/2.

The Cauchy–Schwarz inequality then yields

|am,µ| =
(4πm)k−1

Γ(k − 1)
|⟨f, Pk,(m,µ)⟩|

≤ (4πm)k−1

Γ(k − 1)
· ∥f∥ · ∥Pk,(m,µ)∥

≤ (4π)(k−1)/2
√
C√

Γ(k − 1)
mA/2+(k−1)/2 · ∥f∥. □

The following lemma gives an explicit bound of the form required in Lemma 3.1.

Lemma 3.2. For any half-integer k ≥ 5/2, the diagonal coefficients cm,µ(m,µ) of
Pk,(m,µ) satisfy

|cm,µ(m,µ)| ≤ C ·m
with constant

C = C(k) =
(2π)k

Γ(k) · (k − 2)
+ 2.125.

Proof. From [Bru02a, Chapter 1.2], the Fourier coefficients of

Pk,(m,µ) =
∑

β∈D(Λ)

∑
n∈Q(β)+Z

cm,µ(n, β)q
neβ

are given by the formula

cm,µ(n, β) = 2π
(m
n

)(1−k)/2
∞∑
c=1

1

c
Jk−1(4π

√
mn/c) · Re

[
e−πikKc(µ,m, β, n)

]
,

where Kc is the generalized Kloosterman sum

Kc(µ,m, β, n) =
∑

d∈(Z/cZ)×
e2πi(ma+nd)/c⟨ρ(M)−1eµ, eβ⟩,

and J is the usual Bessel function. For our application, the trivial bound |Kc(µ,m, β, n)| ≤
c will be enough.

The Bessel function satisfies the bounds

|Jk−1(x)| ≤
M

x1/3
, whereM ≈ 0.78574687
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(cf. [Lan00]) and

|Jk−1(x)| ≤
xk−1

2k−1Γ(k)

(cf. [NIST:DLMF], 10.14.4). For small values of c (say c ≤ n), we use the first bound:∣∣∣ n∑
c=1

1

c
Jk−1(4π

√
mn/c) · Re

[
e−πikKc(µ,m, β, n)

]∣∣∣ ≤ (4π
√
mn)−1/3M ·

n∑
c=1

c1/3

≤ (4π)−1/3m−1/6M · n7/6.

We use the second bound for c > n:∣∣∣∑
c>n

1

c
Jk−1(4π

√
mn/c) · Re

[
e−πikKc(µ,m, β, n)

]∣∣∣ ≤ (2π)k−1(mn)(k−1)/2

Γ(k)

∑
c>n

1

ck−1

≤ (2π)k−1m(k−1)/2n(3−k)/2

Γ(k)(k − 2)
.

(In the last step, we used
∑

c>n c
1−k <

∫∞
n

dt
tk−1 = n2−k

k−2
.) Altogether, we have

|cm,µ(n, β)| ≤ 2π
(m
n

)(1−k)/2

· (4π)−1/3m−1/6M · n7/6 +
(2π)k

Γ(k)(k − 2)
n.

For the diagonal coefficient (m,µ = (n, β), we obtain

|cm,µ(m,µ)| ≤ 21/3π2/3M ·m+
(2π)k

Γ(k)(k − 2)
·m.

The claim follows because 21/3π2/3M < 2.125. □

We now describe how to use the bounds of Lemma 3.1 to make the argument of
[BM19] explicit, thereby proving Theorem 1.1.

We will first describe how to compute the cone of Heegner divisors EffH
(
DΛ

/
Õ+(Λ)

)
.

Let
(
Mod◦

k,Λ

)∨
be the space of linear functionals on Mod◦

k,Λ and consider the cone C
generated by the coefficient extraction functionals

cm,µ : Mod◦
k,Λ −→ Q,

∑
am,µq

meµ 7→ am,µ.

Write cm,µ = γm,µe+ sm,µ, where e is the functional

e(Ek,Λ) = −1, e
∣∣∣
Sk,L

= 0,

and sm,µ(Ek,Λ) = 0. In particular,

Ek,Λ(τ) = e0 −
∑
m,µ

γm,µq
meµ.

We need to find an open neighborhood of e contained in the cone C. As in [BM19],
there is a finite set of indices (mi, µi), 1 ≤ i ≤ N and positive rationals λi such that



CONES OF NL DIVISORS 15

cmi,µi
spans S∨

k,L and

(9)
N∑
i=1

λicmi,µi
= e.

Following [BM19, Proposition 3.3], the λi can be constructed as follows. For b
sufficiently large (explicit) positive integer let f be the weakly holomorphic modular
form

f(τ) = ∆(τ)−b · E(2−k)+12b,Λ(−1)(τ), where ∆(τ) = η(τ)24 = q ·
∏
n≥1

(1− qn)24

is the scalar-valued discriminant modular form. Recall that

∆(τ)−b = q−b ·

(∏
n≥1

1

1− qn

)24b

= q−b ·

(
∞∑
n=0

p(n)qn

)24b

,

where p(n) is the number of partitions of n. In particular the coefficient of qm in the
expansion of ∆−b is zero for m < −b and the Fourier coefficients of the product f(τ)
can be computed explicitly. We write

f(τ) =
∑

µ∈D(Λ(−1))

∑
m∈Q

αm,µq
meµ.

As a consequence of the residue theorem one has that for any cusp form f ∈ Sk,Λ,∑
(m,µ)

−b≤m<0

αm,µc−m,µ(f) = 0

and we simply have to choose b ≥ ⌈k/12⌉ large enough such that the above functionals
c−m,µ span S∨

k,Λ. Then taking such a collection as a generating set and λi =
α−mi,µi

α0,0
with

mi > 0 one can ensure (9) holds. This is the only input needed to produce a bound for
a generating set of both the Heegner and the NL-cones.

Example 3.3. As an example, we take the lattice Λ = Λ4 corresponding to the moduli
of degree four K3 surfaces. Then S 21

2
,Λ4

is two dimensional generated by

f1 =
(
−128q − 57344q2 + . . .

)
e0 +

(
q1/8 − 7q9/8 + . . .

)
eℓ∗

+
(
4864q3/2 + 368640q5/2 + . . .

)
e2ℓ∗ +

(
q1/8 − 7q9/8 + . . .

)
e3ℓ∗ ,

f2 =
(
−14q − 568q2 + . . .

)
e0 +

(
32q9/8 + 544q17/8 + . . .

)
eℓ∗

+
(
q1/2 − 188q3/2 + . . .

)
e2ℓ∗ +

(
32q9/8 + 544q17/8 + . . .

)
e3ℓ∗ .

Here the dots mean higher-order terms. Since ⌈k/12⌉ = 1, we take b = 1. Then

∆−1(τ) = q−1
(
1 + 1q + 2q2 + 3q3 + 5q4 + 7q5 + . . .

)24
= q−1 + 24 + 324q + 3128q2 + . . .
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and one obtains

∆−1 · E 7
2
,Λ(−1) = q−1e0 + 64q−1/8eℓ∗ + 14q−1/2e2ℓ∗ + 64q−1/8e3ℓ∗ + 84e0 +

∑
(m,µ)
m>0

αm,µq
meµ.

Recall that cm,µ = cm,−µ. One easily checks that the set of all cm,µ with 0 < m ≤ 1, in
this case {cmi,µi

}4i=1 with indices

(m1, µ1) = (1, 0), (m2, µ2) = (1/8, ℓ∗), (m3, µ3) = (1/2, 2ℓ∗), and(m4, µ4) = (1/8, 3ℓ∗)

generates S∨
k,Λ4

. Then with λ1 =
1
84
, λ2 = λ4 =

64
84
, and λ3 =

14
84
, Equation (9) holds.

We will need to transfer these results for the Petersson norm in terms of the ℓ2-norm
on QM . Recall that we identify each functional sm,µ with the tuple

(sm,µ(f1), ..., sm,µ(fM)) ∈ QM

where f1, ..., fM is a rational basis of Sk,Λ.

Define an inner product on Mod◦
k,Λ as follows: for f ∈ Sk,Λ then ∥f∥ is the usual

Petersson norm and we declare the Eisenstein series Ek,L to have norm one and be
orthogonal to Sk,Λ.

To pass from ∥f∥ to the ℓ2-norm ∥f∥ℓ2 , we need a rational basis whose Petersson
norms can be estimated explicitly. One such basis was described in [Wil18]:

(10) fm,µ :=
∞∑
λ=1

Pk,(λ2m,λµ).

These are convenient because their Petersson norm is easy to bound using Lemma 3.1.
Indeed, writing fm,µ =

∑
c(n, γ)qneγ, one has

∥fm,µ∥2 ≤
∞∑
λ=1

Γ(k − 1)

(4πλ2m)k−1
|c(λ2m,λµ)|

≤ C̃ · Γ(k − 1) · ∥fm,µ∥
(4π)k−1

∞∑
λ=1

(λ2m)k/2

(λ2m)k−1

=
C̃ · Γ(k − 1) · ζ(k − 2)

(4π)k−1
· ∥fm,µ∥ ·m1−k/2.

Therefore,

∥fm,µ∥ ≤ C̃ · Γ(k − 1) · ζ(k − 2)

(4π)k−1
·m1−k/2.

So with respect to this basis, the Petersson norm and the ℓ2-norm on QM of sm,µ are
related by
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∥sm,µ∥ = sup
f ̸=0

|sm,µ(f)|
∥f∥

≥ 1

maxi ∥fi∥

√√√√ 1

M

M∑
i=1

|sm,µ(fi)|2

≥ (4π)k−1 ·maxim
k/2−1
i

C̃ · Γ(k − 1)ζ(k − 2)
√
M

· ∥sm,µ∥ℓ2 .

(11)

Now we can bound the number of generators of the cone C.

Theorem 3.4. For any choice of λi and mi as above (see Equation (9)), the cone C
generated by all coefficient functionals is already generated by cm,µ with

m ≤
(R · Ck,Λ

B

)2/(2−k)

,

where Ck,Λ is any constant such that the Fourier coefficients e(m,µ) of Ek,Λ are bounded
from below by

|em,µ| ≥ Ck,Λ ·mk−1,

where R > 0 is such that the convex hull CS of
smi,µi

γmi,µi
contains the ball of radius R with

respect to the ℓ2-norm, and where

B :=
(C̃)2Γ(k − 1)ζ(k − 2)

√
M

(4π)k−1 ·maxim
k/2−1
i

where C̃ is the constant from Lemma 3.1.

Remark 3.5. Note that CS contains an open neighborhood of 0 by [BM19]. To compute
a concrete radius R, we write CS ⊂ QM as an intersection of finitely many half-planes,
say {x : ⟨v, x⟩ ≤ a}, and take R to be the minimum of |a|/∥v∥ℓ2 , where the latter is the
standard ℓ2-norm on QM . As for the choice of a constant Ck,Λ, when the discriminant
of Λ is D, it that can be derived from [BM19] is

Ck,Λ =
16

5

(π
2

)k
·

√
D

ζ(k − 1/2)Γ(k)

∏
primes
p|D

1− 1/p

1− 1/p2k−1
.

As an example, for the lattices Λ = Λd and k = 21/2, this bound is approximately

Ck,Λ ≈ 0.0002286 ·
√
d
∏
p|d

p odd

1− 1/p

1− 1/p20
.

Proof of Theorem 3.4. The coefficient functional sm,µ is bounded in operator norm by

∥sm,µ∥ ≤ C̃ ·mk/2
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by Lemma 3.1, and therefore in ℓ2-norm by

∥sm,µ∥ℓ2 ≤ B ·mk/2

with the constant B by (11). Recall that ∥e∥ = 1. Since Ck,L is such that

γm,µ ≥ Ck,Λ ·mk−1,

we have ∥∥∥ cm,µ

γm,µ

− e
∥∥∥
ℓ2
≤ B

Ck,Λ

·m1−k/2.

Therefore, if B
Ck,Λ

m1−k/2 < R then cm,µ belongs to the interior of C.

□

Since the functionals cm,µ correspond to the (non-primitive) Heegner divisors Hm,µ

under the isomorphism (6) of Theorem 2.2, Theorem 3.4 describes a generating set for

the Heegner cone EffH
(
DΛ

/
Õ+(Λ)

)
.

We will now use the bounds of Theorem 3.4 in order to compute the NL-cone

EffNL
(
DΛ

/
Õ+(Λ)

)
. As is the case in [BM19], we need to impose the added assumption

that Λ splits off two copies of the hyperbolic plane.

To state the explicit bound Ω in the case of the P∆,δ generating EffNL
(
DΛ

/
Õ+(Λ)

)
,

define the functionals

p∆,δ :=
∑
r∈Z>0

r2|∆

µ(r)
∑

σ∈D(Λ)
rσ=δ

c∆/r2,σ,

such that via the isomorphism (6) one has φ(p∆,δ) = P∆,δ is the corresponding primitive
Heegner divisor by Equation 4. Let P be the cone generated by the p∆,δ. As in the
case of the Heegner cone, using the isomorphism of Theorem 2.2, a description of the

generators of P gives a description of the generators of EffNL
(
DΛ

/
Õ+(Λ)

)
.

Theorem 3.6. Let B,Ck,Λ and R be the constants of Theorem 3.4 and assume Λ has
discriminant D and splits off two copies of the hyperbolic plane. The cone P is already
generated by p∆,δ with

∆ ≤
(

R · Ck,Λ ·M
B · (1 +D · (ζ(k)− 1))2

)2/(2−k)

,

where

M := 1− 1

2

( ∏
p prime

(
1 +

1

p(p− 1)

)
−
∏

p prime

(
1− 1

p(p− 1)

))
> 0.215.
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Proof. By Lemma 3.1 and the triangle inequality, for any cusp form f , we have

|p∆,δ(f)| ≤ C̃ · ∥f∥ ·
∑
r∈Z>0

r2|∆

∑
σ∈D(Λ)
rσ=δ

(∆
r2

)k/2

≤ C̃ · ∥f∥ ·∆k/2 ·
∞∑
r=1

r−k · |{σ ∈ D(Λ) : rσ = 0}|

≤ C̃ ·∆k/2 · ∥f∥ ·
(
1 +D · (ζ(k)− 1)

)
.

On the other hand, if Ek,Λ denotes the Eisenstein series then the proof of [BM19,
Proposition 4.5] shows that

|p∆,δ(Ek,Λ)| ≥ |c∆,δ(Ek,Λ)| ·M
with the constant M defined above.

So we can copy the proof of Theorem 3.4, with the upper and lower bounds for cm,µ

replaced by those for p∆,δ: we multiply Ck,Λ by M and C̃ (as part of the constant B)
by ζ(k) ·D. □

Example 3.7. Continuing Example 3.3, the special basis (10) for S 21
2
,Λ4

consists of the

series

f1/8,ℓ∗ =
7159053

14318102
f1 +

7683852

7159051
f2

f1/2,2ℓ∗ =
1

7159051
f1 +

209563208

221930581
f2.

With respect to this basis, the convex set CS is the triangle with vertices

(−7159053/4,−1/2), (−1/2,−3880799/602547), (2143005/2873041, 122245370/979706981).

This triangle can be described by the inequalities x ∈ R2 with

⟨(2, 602547), x⟩ ≥ −3880800, ⟨(38,−108856407), x⟩ ≥ −13582800,

⟨(−3175198, 602547), x⟩ ≥ −2293200,

so we obtain the radius

R = min
( 3880800

∥(2, 602547)∥
,

13582800

∥(38,−108856407)∥
,

2293200

∥(−3175198, 602547)∥

)
≈ 0.1248

for the largest incircle centered at zero.

We have implemented Sage package [Wila], which, given a lattice Λ satisfying the
given hypotheses of this section, applies method described above together with the

bounds of Theorem 3.6 in order to compute the NL-cone EffNL
(
DΛ

/
Õ+ (Λ)

)
.

The bounds above are far from being sharp. For example, with k = 21/2 and Λ = Λd,
d ≤ 10, the upper bound for ∆ in Theorem 3.7 is given in the following table (rounded
to three decimal places):
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d = 1 d = 2 d = 3 d = 4 d = 5
Bound 132.245 101.641 110.616 110.252 119.500

d = 6 d = 7 d = 8 d = 9 d = 10
Bound 130.571 119.825 124.493 142.932 140.355

On the other hand, in all cases we were able to compute, the cone of primitive Heegner
divisors is already generated in discriminant ∆ ≤ 2. As a practical matter, we found it
far more efficient to compute the cone generated by Heegner divisors with ∆ ≤ 2 and
then check afterwords that it contains all P∆,δ with ∆ up to the above bound.

In Sections 5–7 below we explicitly compute EffNL
(
DΛ

/
Õ+ (Λ)

)
in the cases of moduli

of polarized K3 surfaces and hyperkähler manifolds.

4. Finite maps and NL-cones

Now we place ourselves in the following situation. Let Λ,Λ′ be two even lattices of

signature (2, n) with n ≥ 3, and Λ′ ⊂ Λ a finite index embedding. Let Γ ⊂ Õ+ (Λ) be an
arithmetic group and Γ′ a finite-index subgroup of the stabilizer of Λ′ in Γ. Then both
Γ and Γ′ act on the same period domain D = DΛ = DΛ′ and the modular projection
πΓ : D −→ D

/
Γ factors

(12) D πΓ′−→ D
/
Γ′ ϕ−→ D

/
Γ.

Proposition 4.1. In the above setting,

ϕ∗EffNL
(
D
/
Γ
)
⊂ EffNL

(
D
/
Γ′) and ϕ∗Eff

NL
(
D
/
Γ′) ⊂ EffNL

(
D
/
Γ
)
.

Proof. Let P be an irreducible component of Hm,µ in D
/
Γ. By definition (2), there

exists an hyperplane Dv ⊂ D with v ∈ Λ∨ ⊂ ΛQ such that Q(v) = m, v ≡ µ mod Λ
and πΓ (Dv) = P . Consider the Γ-invariant hyperplane arrangement⋃

g∈Γ

Dg(v).

Note that g(v) ∈ Λ∨ ⊂ (Λ′)∨. In particular each πΓ′(Dg(v)) is a component of Hm,δ with
g(v) ≡ δ mod Λ′ and up to positive multiplicities

ϕ∗P ≤ πΓ′

(⋃
g∈Γ

Dg(v)

)
≤

∑
δ∈D(Λ′)

Hm,δ.

This shows that ϕ∗P is a sum of irreducible components of Heegner Q-divisors on D
/
Γ′.

Similarly, let P be an irreducible component of a Heegner divisor Hm,µ in D
/
Γ′. There

exists v ∈ (Λ′)∨ with
∑

g∈Γ′ Dg(v) descending to P via πΓ′ . The inclusion Λ∨ ⊂ (Λ′)∨ has
finite index, let r be the smallest positive integer such that rv ∈ Λ∨. Since Dv = Drv,
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up to multiplicities we have

ϕ∗P ≤ πΓ

(⋃
g∈Γ′

Dg(rv)

)
≤
∑

δ∈D(Λ)

Hr2m,δ.

□

In fact, in the case of the pullback map ϕ∗, we can say something even more precise.

Proposition 4.2. In the setting above, assume further that the Hodge class λ (resp. λ′)
lies in the interior of EffNL

(
D
/
Γ
)
(resp. EffNL

(
D
/
Γ
)
), then

ϕ∗∂EffNL
(
D
/
Γ
)
⊂ ∂EffNL

(
D
/
Γ′) and ϕ∗ (EffNL

(
D
/
Γ
))◦ ⊂ (EffNL

(
D
/
Γ′))◦ .

In particular if Z is an element of ∂EffNL
(
D
/
Γ
)
, then every irreducible component of

ϕ∗Z is contained in ∂EffNL
(
D
/
Γ′).

Proof. Let Z be an element of the boundary ∂EffNL
(
D
/
Γ
)
. Since by assumption the

Hodge class λ is contained in the interior
(
EffNL

(
D
/
Γ
))◦

, we have that for any ε > 0,

the class Z − ελ lies outside of EffNL
(
D
/
Γ
)
. If ϕ∗ (Z − ελ) ∈ EffNL

(
D′/Γ), then by

Proposition 4.1 we have that the class

ϕ∗ϕ
∗ (Z − ελ) = deg(ϕ) (Z − ελ)

lies in EffNL
(
D
/
Γ
)
, which is a contradiction. Therefore,

ϕ∗ (Z − ελ) = ϕ∗Z − ελ

lies outside of EffNL
(
D
/
Γ′) for all ε > 0. Note that by assumption ϕ∗λ = λ′ also lies in

the interior of
(
EffNL

(
D
/
Γ′))◦. Hence ϕ∗Z lies in the boundary ∂EffNL

(
D
/
Γ
)
.

Similarly, if Z lies in the interior
(
EffNL

(
D
/
Γ
))◦

, then for |ε| > 0 sufficiently small,

the class Z−ελ lies in EffNL
(
D
/
Γ
)
and so by Proposition 4.1, we have that ϕ∗(Z−ελ) =

ϕ∗Z − εϕ∗λ lies in EffNL
(
D′/Γ). It follows that ϕ∗Z is in the interior

(
EffNL

(
D′/Γ))◦.

□

Remark 4.3. When Λ splits off two copies of U and Γ = Õ+ (Λ), then by [BM19, Section
4] the Hodge class is in the interior of the NL cone.

Let ρ ∈ ΛQ and consider the reflection with respect to a negative

(13) σρ : v 7→ v − 2
⟨v, ρ⟩
⟨ρ, ρ⟩

ρ ∈ O(ΛQ) .

The element ρ is called Γ-reflexive if ⟨ρ, ρ⟩ < 0 and σρ or −σρ is in Γ ⊂ O+ (ΛQ). Note
that σρ ∈ O+(ΛQ) when ⟨ρ, ρ⟩ < 0. The same holds for −σρ since −Id ∈ O+(Λ) when Λ
has signature (2, n). Recall that the divisibility div(ρ) of a primitive element ρ ∈ Λ is
the positive generator of the ideal ⟨ρ,Λ⟩ ⊂ Z. The reflection σρ is in O(Λ) if and only if
div(ρ) is Q(ρ) or 2Q(ρ).
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The modular projection πΓ is simply ramified [GHS07, Theorem 2.12 and Corollary
2.13] (see also [GHS13, Section 6.2]) along the union of hyperplanes Dρ where ρ is
Γ-reflexive. Further, since πΓ = ϕ ◦ πΓ′ , the finite map ϕ also simply ramified.

For v ∈ Λ we denote by v∗ the primitive element in Λ∨ given by v/div(v). For ρ ∈ ΛQ
we denote by Pρ (resp. P ′

ρ) the irreducible and reduced divisor supported on the image
πΓ(Dρ) (resp. πΓ′(Dρ)). In particular, Pρ = Prρ, and when ρ is primitive in Λ, with
ρ∗ = ρ/div(ρ), if (m,µ) = (Q(ρ∗), ρ∗ + Λ), then Pρ = Pm,µ if 2µ ̸= 0 in D(Λ), and
Pρ =

1
2
Pm,µ otherwise. The reduced branch divisor of πΓ is then given by

(14) Br (πΓ) =
∑

PΓ−orb.
ρ Γ−ref.

Pρ,

where the sum runs over PΓ-orbits of reflexive primitive elements ρ ∈ Λ. Further, since
πΓ = ϕ ◦ πΓ′ , the finite map ϕ is simply ramified at

(15) Rϕ =
∑

PΓ′−orb.
ρ Γ−ref.

P ′
ρ −

∑
PΓ′−orb.
ρ Γ′−ref.

P ′
ρ.

Proposition 4.4. Let Λ be an even lattice of signature (2, n). Then, the reduced branch

divisor of the modular projection π : DΛ −→ DΛ

/
Õ+ (Λ) always contains 1

2
H−1,0.

Proof. In light of Equation (4) the reduced Heegner divisor 1
2
H−1,0 is the sum of P ′

ρ∗s
where ρ∗ ∈ Λ∨ is primitive and for some integer r > 0

rρ∗ ∈ Λ and Q(rρ∗) =
⟨rρ∗, rρ∗⟩

2
= −1.

We have to show that for all such ρ∗ one has ±σρ∗ ∈ Õ+(Λ). Note that ⟨rρ∗, rρ∗⟩ = −2

implies that rρ∗ is primitive in Λ. Then the inclusion ±σρ∗ ∈ Õ+(Λ) follows from
[GHS07, Proposition 3.1]. □

4.1. Pull-back formula. The finite index embedding Λ′ ⊂ Λ corresponds to the
isotropic subgroup

H = Λ
/
Λ′ ⊂ D(Λ′) = (Λ′)∨

/
Λ′

with the natural projection p : H⊥ −→ H⊥/H = Λ∨/Λ. The map

ψ : C [D(Λ′)] −→ C [D(Λ)]

eµ′ 7→

{
ep(µ′) if µ′ ∈ H⊥

0 otherwise.



CONES OF NL DIVISORS 23

is equivariant with respect to the Weil representations ρΛ and ρΛ′ and induces a linear
map [Ma19, Lemma 2.1 and Corollary 2.2] given on Fourier expansions by:

ψ : Mod◦
k,Λ′ −→ Mod◦

k,Λ,
∑

µ′∈D(Λ′)

Φµ′(q)eµ′ 7→
∑

µ∈D(Λ)

 ∑
µ′∈H⊥

p(µ′)=µ

Φµ′(q)

 eµ.

Then the dual map ψ∨ :
(
Mod◦

k,Λ

)∨ −→
(
Mod◦

k,Λ′

)∨
acts on coefficient extraction

functionals by

cm,µ 7→ cm,µ ◦ ψ =
∑

µ′∈H⊥

p(µ′)=µ

cm,µ′ .

In particular, via the isomorphism (6), the map on Picard groups PicQ
(
D
/
Γ
)
−→

PicQ
(
D
/
Γ′) is given by Hm,µ 7→

∑
µ′∈p−1(µ)H

′
m,µ′ . We observe that this map is, up to

multiplicities coming from ramification, the map from geometry given by the pullback
via the algebraic map ϕ : D

/
Γ′ −→ D

/
Γ sending Γ′-orbits to Γ-orbits.

Proposition 4.5. The pullback ϕ∗ : PicQ
(
D
/
Γ
)
−→ PicQ

(
D
/
Γ′) is given on Heegner

divisors up to multiplicity by

supp (ϕ∗Hm,µ) = supp

 ∑
µ′∈p−1(µ)

H ′
m,µ′

 .

Proof. Recall that Hm,µ is given by the quotient

Hm,µ =

 ∑
v∈µ+Λ
Q(v)=m

Dv

/Γ.
Further the projection p : H⊥ −→ D(Λ) induces a disjoint union decomposition of the
class µ+ Λ ∈ D(Λ) given by

µ+ Λ =
∐

µ′∈H⊥

p(µ′)=µ

µ′ + Λ′, where
∑

v∈µ+Λ
Q(v)=m

Dv =
∑

µ′∈H⊥

p(µ′)=µ

∑
v∈µ′+Λ′

Q(v)=m

Dv.

Since for each µ′ + Λ′, the cycle
∑

v∈µ′+Λ′

Q(v)=m

Dv is Γ′-invariant and descends to H ′
m,µ′ in

D
/
Γ′. At the level of supports we have

ϕ−1 (Hm,µ) =

 ⋃
v∈µ+Λ
Q(v)=m

Dv

/Γ′ = supp

 ∑
µ′∈H⊥

p(µ′)=µ

Hm,µ′

 .

□
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5. Moduli of K3 surfaces

As an example of how to apply the results of Sections 3 and 4, we now specialize to
studying the NL-cones EffNL (F2d) and the finite maps of Section 4 in the case of moduli
spaces F2d of quasi-polarized K3 surfaces. In this case Λ2d = U⊕2 ⊕E8(−1)⊕2 ⊕A1(−d)
and if ℓ and ℓ′ are the generators of A1(−d) and A1(−dr2) respectively, the finite index

embedding Λ2dr2 ↪→ Λ2d is given by ℓ′ 7→ rℓ. Further Γ = Õ+ (Λ2d) and Γ′ = Õ+ (Λ2dr2)
(see [GHS13, Lemma 7.1]), and the map ϕ in (12) is on coarse moduli spaces ϕ : F2dr2 −→
F2d. We will denote by πr : D −→ F2dr2 and π : D −→ F2d the corresponding modular
projections and {e, f} will denote the standard basis of the first copy of U . From
[GHS07, Corollary 3.4], one has that a primitive element ρ ∈ Λ2d with ⟨ρ, ρ⟩ < 0 is
Γ-reflexive if and only if

(16) ⟨ρ, ρ⟩ = −2 or ⟨ρ, ρ⟩ = −2d and div(ρ) ∈ {d, 2d}.

For ρ = λx + mℓ with x ∈ U⊕2 ⊕ E8(−1)⊕2 primitive, the divisibility is div(ρ) =
gcd(λ, 2dm) and ρ∗ = m · 2d

div(ρ)
ℓ∗.

Corollary 5.1. The reduced branch divisor of the modular projection π : D −→ F2d in
terms of primitive Heegner divisors P∆,δ is given by

(17)

Br(π) =
1

2

(
P−1,0 +Nd · P− 1

4
,dℓ∗ +Md · P− 1

2
,2ℓ∗

)
+

∑
0≤m<d/2

m2≡1 mod d

P− 1
d
,2mℓ∗ +

∑
0≤m<d

m2≡1 mod 4d

P− 1
4d

,mℓ∗ ,

with Md = 1 if d = 2 and zero otherwise, and

Nd =

{
1 d ≡ 1 mod 4

0 otherwise.

Further, the ramification divisor of ϕ : F2dr2 −→ F2d in terms of primitive Heegner
divisors P ′ is given by

Rϕ =
∑

PΓ′−orb.
⟨ ρ
s
, ρ
s
⟩=−2

P ′
ρ +

∑
PΓ′−orb.
⟨ ρ
s
, ρ
s
⟩=−2d

div( ρ
s)=d

P ′
ρ +

∑
PΓ′−orb.
⟨ ρ
s
, ρ
s
⟩=−2d

div( ρ
s)=2d

P ′
ρ − Br(πr)

where the sums run over PΓ′-orbits of primitive elements ρ ∈ Λ2dr2,

s = s(ρ) = gcd
(
r, divΛ2dr2

(ρ)
)

and Br(πr) is given by the same expression as (17) replacing d with dr2, P with P ′, and
ℓ with ℓ′.

Remark 5.2. Recall that for ρ ∈ ΛQ we denote by Pρ (resp. P ′
ρ) the irreducible and

reduced divisor supported on the image πΓ(Dρ) (resp. πΓ′(Dρ)) and when ρ is primitive
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in Λ, with ρ∗ = ρ/div(ρ), if (m,µ) = (Q(ρ∗), ρ∗ +Λ), then Pρ = Pm,µ if 2µ ≠ 0 in D(Λ),
and Pρ =

1
2
Pm,µ otherwise.

Proof of Corollary 5.1. This is a direct consequence of (14) and (16). Since D(Λ2d) is
cyclic generated by the class of ℓ∗ =

ℓ
2d
, when ⟨ρ, ρ⟩ = −2 the orbit of ρ only depends on

its divisibility, which is either 1 or 2, the second case occurring only when d ≡ 1 mod 4.
Two orbit representatives are then e − f and 2

(
e+ d−1

4
f
)
+ ℓ, with corresponding

indexing pairs (Q(ρ∗), ρ∗ + Λ2d) given by (−1, 0) and
(
−1

4
, dℓ∗

)
. If instead ⟨ρ, ρ⟩ = −2d,

imposing div(ρ) = d forces ρ = λdx + mℓ with m2 ≡ 1 (mod d) and ρ∗ = 2mℓ∗.

Conversely, for each such 0 ≤ m < d an orbit representative is d
(
e+ m2−1

d
f
)
+mℓ.

The argument is similar for div(ρ) = 2d.

We obtain in this way all the terms in (14). to take multiplicity into account, observe
that Pρ = P−ρ and that Pm,µ has multiplicity two when 2δ∗ = 0, in particular, P− 1

d
,2ℓ∗

has multiplicity 2 if and only if d = 2.

For the second equation, note that ρ
s
= λ

(
divΛ

2dr2
(ρ)

s

)
x+m r

s
ℓ is primitive in Λ2d and

Γ-reflexive. The equation then follows from (15). □

5.1. Computation of EffNL (F2d) in low degree. The method of Section 3 together
with the bounds of Theorem 3.6 (and their Sage implementation [Wila]) allow us to
compute the generating rays of EffNL (F2d) for low d. These calculations confirm (aside
from one additional generator in the case d = 13) the predictions of [Pet15, Remark
4.7.1 and Table 4.5]. We record these calculations in Table 1.

We remark that, using the formula KF2d
= 19λ− 1

2
Br(π) together with the first part

of Corollary 5.1, one can express the canonical divisor KF2d
in terms of generating rays

of EffNL (F2d), thereby determining the positioning of KF2d
with respect to EffNL (F2d).

These calculations already appear in Peterson [Pet15, Table 4.5]. For all values of d
appearing in Table 1 (namely for 1 ≤ d ≤ 20) the canonical divisor KF2d

lies outside of
EffNL (F2d).

5.2. Boundary divisors in degree 2dr2. In the case of the moduli space of quasi-
polarized K3 surfaces F2d, we consider for any positive integer r > 0 the finite map
ϕ : F2dr2 → F2d induced, as in Section 4 by the embedding of lattices Λ2dr2 ↪→ Λ2d is
given by ℓ′ 7→ rℓ. It follows from Proposition 4.2 that the pullback along the finite
map ϕ of any divisor lying in the boundary of EffNL (F2d) lies in the boundary of
EffNL (F2dr2). In particular, the pullback of any generating ray appearing in Table 1
lies in the boundary of EffNL (F2dr2).

Proposition 5.3. Let Pm,µ be a primitive Heegner divisor on F2d. Let γ be the order of
µ in D(Λ2d) and write µ = 2d

γ
aℓ∗, where gcd(a, γ) = 1. Then, letting r > 0 be a positive

integer, the support of the pullback ϕ∗Pm,µ under the finite map ϕ : F2dr2 → F2d is given
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by the formula

supp (ϕ∗Pm,µ) =
⋃

(k,s)∈I(m,µ)

P m
k2

,
2dr(a+γs)

γk
ℓ′∗
,

where the index set I(m,µ) ⊂ Z× Z is given by all (k, s) ∈ Z× Z such that

(i) 1 ≤ k ≤ r and k divides r
gcd(r, 2d

γ
)
,

(ii) 0 ≤ s < kr, subject to the condition that gcd
(
k, 2d

γ
(a+ γs)

)
= 1 and

d

γ
(a+ γs)2 ≡ −γm mod γk2,

where the last congruence denotes that the difference of the two rational numbers
is an integer multiple of γk2.

Proof. We may choose a primitive representative ρ ∈ Λ2d of the Õ
+(Λ2d)-orbit of elements

in Pm,µ of the form ρ = γ(e+ tf) + aℓ, where ρ has divisibility γ and t = m− d
γ2a

2, so

that ⟨ρ, ρ⟩ = 2γ2m (and thus Q(ρ∗) =
⟨ρ,ρ⟩
2γ2 = m). By primitivity, gcd(γ, a) = 1.

Now a primitive element v = γkx + αℓ ∈ Λ2d with k ∈ Z>0, x ∈ U⊕2 ⊕ E8(−1)⊕2

primitive, and div(v) = γ is in the same Õ+(Λ2d)-orbit as ρ if and only if v∗ = ρ∗ and

⟨v, v⟩ = ⟨ρ, ρ⟩. Namely v is in the same Õ+(Λ2d)-orbit as ρ if and only if v∗ =
2d
γ
αℓ∗ is

congruent to 2d
γ
aℓ∗ modulo Λ2d and 2γ2k2 ⟨x,x⟩

2
− 2dα2 = 2γ2m. The condition 2d

γ
α ≡ 2d

γ
a

mod 2d is satisfied if and only if α = (a+ γs) for some integer s.

Therefore such a v exists if and only if one can produce a primitive x ∈ U⊕2⊕E8(−1)⊕2

such that

2γ2k2
(x, x)

2
− 2d(a+ γs)2 = 2γ2m.

This is equivalent to the condition

(18)
d

γ
(a+ γs)2 ≡ −γm mod γk2.

Moreover, note that the condition div(v) = γ implies

gcd

(
k,

2d

γ
(a+ γs)

)
= 1.

Further, the primitivity of ρ ensures gcd(γk, a+ γs) = 1 and the primitivity of v. In

particular, elements of Λ2d in the same Õ+(Λ2d)-orbit as ρ are all of the form

(19) vk,s = γkx+ (a+ γs)ℓ,

for any choice of integers k, s and x ∈ U⊕2⊕E8(−1)⊕2 primitive, subject to the condition

(20) gcd

(
k,

2d

γ
(a+ γs)

)
= 1 and

d

γ
(a+ γs)2 ≡ −γm mod γk2.
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For such a choice of k, s, let λ = gcd(r, a+ sγ) and consider the element wk,s =
r
λ
vk,s,

see (19). Observe that

wk,s =
r

λ
γkx+

a+ sγ

λ
ℓ′

is primitive in Λ2dr2 , since gcd( r
λ
γk, a+sγ

λ
) = 1 (using that gcd(k, 2d

γ
(a + γs)) = 1 and

gcd(a+sγ
λ
, r
λ
) = 1). Moreover, note that λwk,s ∈ r · Λ2d ⊂ Λ2dr2 . Then we have

⟨wk,s, wk,s⟩ =
r2

λ2
⟨vk,s, vk,s⟩ =

r2

λ2
⟨v, v⟩ = 2r2γ2m

λ2
.

Further, the divisibility of wk,s is given by

gcd

(
r

λ
γk, 2dr2

a+ sγ

λ

)
=
rγ

λ
gcd

(
k,

2dr

γ
(a+ sγ)

)
=
rγ

λ
gcd(k, r).

It follows that

(wk,s)∗ =
1

rγ
λ
gcd(k, r)

· a+ sγ

λ
ℓ′ =

a+ sγ

rγgcd(k, r)
ℓ′ =

a+ sγ

γgcd(k, r)
2drℓ′∗

Q ((wk,s)∗) =
2r2γ2m

λ2
· 1

2( rγ
λ
gcd(k, r))2

=
m

gcd(k, r)2
.

Therefore, the choice of integers s, k corresponds to the component of ϕ∗Pm,µ given by

P m
gcd(k,r)2

,
2dr(a+sγ)
γgcd(k,r)

ℓ′∗
.

However, if the pair (s, k) satisfies (20), then so does the pair (s, gcd(k, r)). Since
both (s, k) and (s, gcd(k, r)) correspond to the same component P m

gcd(k,r)2
,
2dr(a+sγ)
γgcd(k,r)

ℓ′∗
of

ϕ∗Pm,µ, we may restrict ourselves to pairs (s, k) as above where k divides r. Further,

since gcd
(
k, 2d

γ
(a+ γs)

)
= 1, the integer k is coprime with 2d

γ
and we may restrict

further to the case that k divides r

gcd(r, 2dγ )
. Such a pair (s, k) then yields uniquely to

the component of ϕ∗Pm,µ given by

P m
k2

,
2dr(a+sγ)

γk
ℓ′∗
.

Similarly, we can reach all possible elements 2dr(a+sγ)
γk

ℓ′∗ by taking 0 ≤ s < kr. Note

that the condition (20) on (s, k) depends only on the value of s modulo k2. Since we
have assumed that k divides r, we thus may restrict to the case 0 ≤ s < kr. This gives
us the formula for the support of ϕ∗Pm,µ. □

Example 5.4. We consider the case of F2 and apply Proposition 5.3 to compute the
pullback ϕ∗P−1,0 under the finite map ϕ : F2dr2 → F2 for some low values of r in Table 2.

Proof of Theorem 1.3. The theorem follows immediately from Proposition 5.3 together
with Proposition 4.2 and the computations of Table 1. □



28 IGNACIO BARROS, PIETRO BERI, LAURE FLAPAN, AND BRANDON WILLIAMS

6. Hyperkähler fourfolds of K3[2]-type

Let (X,L) be a primitively polarized hyperkähler fourfold of K3[2]-type. Then the
Beauville–Bogomolov–Fujiki lattice (H2(X,Z), qX) is isomorphic to

Λ = U⊕3 ⊕ E8(−1)⊕2 ⊕ A1(−1).

The polarization L comes with two invariants singling out a component of the moduli
space. These are the Beauville–Bogomolov–Fujiki degree 2d and the divisibility γ ∈
{1, 2}. Further, when γ = 2, then d = 4t − 1 for some t ≥ 1. We will denote by
Mγ

K3[2],2d
the partial compactification of the corresponding moduli space given by the

modular variety DΛh

/
Mon2(Λ, h), where after choosing a marking, Λh is the orthogonal

complement of h = c1(L) in Λ, and Mon2(Λ, h) = Õ+ (Λh), cf. [Mar11, Lemma 9.2] and
[BBBF23, Proposition 3.7].

Unirational parametrizations of these moduli spaces are only available in degree 2d = 2
for γ = 1, and t = 1, 3, 5 with 2d = 8t−2 for γ = 2, cf. [BD85,O’G06,IR01, IR07,DV10],
see also [Mon13, Proposition 1.4.1]. Further, from [GHS10,BBBF23] it follows that

Kod
(
M1

K3[2],2d

)
=

{
−∞ if d = 1

20 if d ≥ 12,
Kod

(
M2

K3[2],8t−2

)
=

{
−∞ if t = 1, 3, 5

20 if t ≥ 12, t = 10.

With this in mind, in addition to computing the NL cones of these moduli spaces, we
aim to understand the positivity properties of their canonical classes. Recall that the
canonical class for these moduli spaces Mγ

K3[2],2d
is given by the formula

(21) KMγ

K3[2],2d

= 20λ− 1

2
Br (πd) ,

where λ is the Hodge class and Br (πd) is the branch divisor of the projection D −→
DΛh

/
Õ+ (Λh).

We will denote by Λd and Λt the lattices U⊕2 ⊕ E8(−1)⊕2 ⊕Qd (resp. Qt) where

Qd = Zℓ+ Zδ =
(

−2d 0
0 −2

)
and Qt = Zu+ Zv =

(
−2t 1
1 −2

)
.

These correspond to the lattice Λh for (X,L) in Mγ

K3[2],2d
when γ = 1, respectively

γ = 2 with d = 4t − 1. When γ = 1, the discriminant group is isomorphic to
Z
/
2dZ × Z

/
2Z, generated by ℓ∗ and δ∗. When γ = 2, the discriminant group is

isomorphic to Z/dZ and is generated by (2u+ v)∗.

The computation of Br (πd) requires the following lemma classifying reflexive elements.

Lemma 6.1 (Proposition 3.2 and Corollary 3.3 in [GHS07]). A primitive element ρ ∈ Λd

with ⟨ρ, ρ⟩ < 0 is reflexive if and only if one of the following holds

(i) ⟨ρ, ρ⟩ = −2,

(ii) ⟨ρ, ρ⟩ = −2d and div(ρ) = 2d,
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(iii) d is odd, ⟨ρ, ρ⟩ = −2d and div(ρ) = d,

(vi) d is even, ⟨ρ, ρ⟩ = −2d, div(ρ) = d, and ρ∗ ≡ 2mℓ∗ mod Λd with m2 ≡ 1
(mod d).

Further, a primitive element ρ ∈ Λt with ⟨ρ, ρ⟩ < 0 is reflexive if and only if one of the
following holds

(i) ⟨ρ, ρ⟩ = −2 and div(ρ) = 1,

(ii) ⟨ρ, ρ⟩ = −2d and div(ρ) = d,

where d = 4t− 1.

Proof. The only case which is not treated in [GHS07] is when γ = 1, d > 1 is even,
⟨ρ, ρ⟩ = −2d, and div(ρ) = d. In this case (see [GHS07, Equation (18)] the vector ρ
being reflexive is equivalent to

(22) 2v ≡ −⟨ρ, r⟩ρ∗ mod Λd for v ∈ {ℓ∗, δ∗}.
Since the divisibility of ρ is d, we can assume ρ = dx+mℓ+ d

2
λδ, with x ∈ U⊕2⊕E8(−1)⊕2

and m,λ ∈ Z. For v = δ∗, Condition (22) becomes 0 ≡ ⟨ρ, δ∗⟩ ≡ 1
2
⟨ρ, δ⟩ ≡ −d

2
λρ∗. Since

ρ is primitive, the class ρ∗ has order d, hence λ has to be even and ρ∗ ≡ 2mℓ∗+λδ∗ ≡ 2mℓ∗
mod Λd. With v = δ∗, Condition (22) implies 2ℓ∗ ≡ −2m⟨ρ, ℓ∗⟩ℓ∗ ≡ −m

d
⟨ρ, ℓ⟩ℓ∗ ≡ 2m2ℓ∗.

Since ⟨ℓ∗⟩ ∼= Z/2dZ, the condition holds if and only if m2 ≡ 1 (mod d). □

The equation (14) gives us the following classes in terms of primitive Heegner divisors.

Proposition 6.2. Let πd (resp. πt) be the modular projection DΛd
−→ DΛd

/
Õ+ (Λd)

(resp. for Λt). Then, the reduced branch divisor is given by

Br (πd) =
1

2

(
P−1,0 + P− 1

4
,δ∗ + C1,d · P− 1

4
,dℓ∗+δ∗ + C2,d · P− 1

4
,dℓ∗ +Md · P− 1

2
,2ℓ∗

)
+

∑
0≤m<d/2

m2≡1 mod d

P− 1
d
,2mℓ∗ +

∑
0≤m<d

m2≡1 mod 4d

P− 1
4d

,mℓ∗

+ C2,d ·
∑

0≤m<d/2
4m2≡1 mod d

4m2−1
d

≡3 mod 4

P−1
4d

,2mℓ∗+δ∗
+

∑
0≤m<d

m2≡1 mod d
m2−1

d
≡3 mod 4

P− 1
4d

,mℓ∗+δ∗ .

Where Md = 1 if d = 2 and zero otherwise, and

C1,d =

{
1 d ≡ 0 mod 4

0 otherwise
and C2,d =

{
1 d ≡ 1 mod 4

0 otherwise.

Similarly, for πt one has:

Br (πt) =
1

2
P−1,0 +

∑
0<m<d/2

m2≡1 mod d

P− 1
d
,m(2u+v)∗ ,

where d = 4t− 1.
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Remark 6.3. Note that the last summand of Br (πd) is zero when d ̸≡ 0 mod 8.

Proof of Proposition 6.2. The proof follows from Equation (14) and Lemma 6.1. As
in Corollary 5.1, it is an elementary case-by-case analysis. By Eichler’s Criterion, for
each square and divisibility (2r, γ) singled out in Lemma 6.1 there is a contribution to
the sum for each orbit of a primitive element with the given square and divisibility or,
equivalently, for each pair (⟨ρ, ρ⟩, ρ∗) ∈ 2Z × D(Λ) with ⟨ρ, ρ⟩ = 2r and ord(ρ∗) = γ.
For the sake of brevity, we will only treat the first case, the rest are analogous. If
⟨ρ, ρ⟩ = −2, then div(ρ) ∈ {1, 2}. If div(ρ) = 1, then ρ∗ = 0 in D(Λd) and there is
only one orbit. One can take as representative ρ = e− f . This accounts for P−1,0. If
div(ρ) = 2, then ρ∗ has order two in D(Λd):

ρ∗ ∈ {δ∗, dℓ∗, δ∗ + dℓ∗}.

If ρ∗ = δ∗, then one can take as orbit representative ρ = δ. This accounts for the
contribution P 1

4
,δ∗ . If ρ∗ = dℓ∗, then ρ is of the form 2x+αδ+βℓ with x ∈ U⊕2⊕E8(−1)⊕2,

α even and β odd. Since ⟨ρ, ρ⟩ = −2, this forces d ≡ 1 mod 4. Then one can take
as orbit representative ρ = 2

(
e+ d−1

4
f
)
+ ℓ. This accounts for the contribution of

C2,d ·P− 1
4
,dℓ∗ . Similarly, if ρ∗ = δ∗+dℓ∗, then ρ is of the form 2x+αδ+βℓ with both α, β

odd. In this case ⟨ρ, ρ⟩ = −2 forces d ≡ 0 mod 4, and one can take as representative
ρ = 2

(
e+ d

4
f
)
+ δ + ℓ, accounting for the contribution C1,d ·P− 1

4
,dℓ∗+δ∗ . The other cases

are treated similarly. □

Example 6.4. As an example of these computations of the branch divisor of Br (πd), in
Table 3 we list the class of the branch divisor of πd in the split case for low polarization
degrees in terms of primitive Heegner divisors as well as a linear combination of Heegner
divisors generating the Picard group.

Using the description of Br (πd) in Proposition 6.2, one can compute the canonical
classes of the moduli spaces Mγ

K3[2],2d
.

Theorem 6.5. The generators of the NL-cone EffNL
(
Mγ

K3[2],2d

)
as well as the position

of the canonical class for d ≤ 5 in the split case, and t ≤ 5 with d = 4t − 1 in the
non-split case are as appear in Tables 4 and 5.

Proof. The description of the generators of the NL-cones EffNL
(
Mγ

K3[2],2d

)
is computed

using the Sage program [Wila] following the procedure described in Section 3. The
positivity of KMγ

K3[2],2d

is calculated using Proposition 6.2 and (21) together with the

explicit descriptions of the NL-cones.

□
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7. Moduli of Kumn and OG6-type

Let (X,L) be a primitively polarized hyperkähler sixfold where X is deformation
equivalent to O’Grady’s six-dimensional example [O’G03]. In this case the Beauville–
Bogomolov–Fujiki lattice (H2 (X,Z) , qX) is isomorphic [Rap08] to Λ = U⊕3⊕A1(−1)⊕2.
Further, the monodromy group coincides [MR21] with the full group O+(Λ). If h =
c1(L) ∈ Λ with (h, h) = 2d > 0, then γ = divΛ(h) can be 1 or 2.

We denote by Λh be the orthogonal complement of h in Λ. The period domain
Mγ

OG6,2d = DΛh

/
O+ (Λ, h) is a partial compactification of the moduli space parame-

terizing primitively polarized hyperkähler sixfolds of OG6-type with a polarization of
degree 2d and divisibility γ. It is always irreducible [Son23, Section 3] and when γ = 1,
is non-empty for all d ≥ 1 and when γ = 2, is non-empty only for d ≡ 2, 3 mod 4. Not
much is known about the global geometry of the moduli spaces Mγ

OG6,2d.

In the split case γ = 1, Λh
∼= U⊕2 ⊕ A1(−1)⊕2 ⊕ A1(−d). When γ = 2, then

Λh = U⊕2 ⊕Qt, where

Qt =


A1(−1)⊕

(
−2 1

1 −2t

)
when d = 4t− 1 −2 0 1

0 −2 1

1 1 −2t

 when d = 4t− 2.

We denote by δ1, δ2 the generators of the two copies of A1(−1) in Λ, by {e, f} and
{e1, f1} the canonical basis of two orthogonal copies of the hyperbolic plane.

Lemma 7.1. The polarized monodromy group Mon2 (Λ, h) ⊂ O+ (Λh) is a double
extension of the stable orthogonal group of Λh. More precisely

O+(Λ, h) = ⟨Õ+(Λh), σκ⟩,

where

κ =


δ1 − δ2 if γ = 1,

f + (e1 + f1) + δ1 − δ2 if γ = 2, d = 4t− 1,

δ1 − δ2 if γ = 2, d = 4t− 2.

Proof. Let h ∈ Λ be an element with ⟨h, h⟩ = 2d and divΛ(h) = γ. Since Λ and Λh

contain two copies of the hyperbolic plane, the map O(Λ) −→ O(D(Λ)) and the respective

one for Λh are surjetive. In particular,
[
O+(Λ) : Õ+(Λ)

]
= 2. Since Õ+(Λ, h) = Õ+(Λh),

see for example [ABL24, Lemma 3.13], either O+(Λh) is equal to Õ+(Λh) or it is a
double extension.

By Eichler’s Criterion we can always assume h = e + df when γ = 1, and h =
2(e+ tf)− δ1 or h = 2(e+ tf)− (δ1+ δ2) when γ = 2. Assume γ = 1. Since δ1− δ2 ∈ Λh,
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the reflection σδ1−δ2 ∈ O+(Λ) fixes h and exchanges the two generators of D(Λ), so

σδ1−δ2 ∈ O+(Λ, h) and σδ1−δ2 ̸∈ Õ+(Λh). The others are analogous. □

Theorem 7.2. The moduli space Mγ
OG6,2d is uniruled in the following cases

(i) when γ = 1 for d ≤ 12,

(ii) when γ = 2 for t ≤ 10 and t = 12 with d = 4t− 1,

(iii) when γ = 2 for t ≤ 9 and t = 11, 13 with d = 4t− 2.

Proof. We will show that Mh = DΛh

/
Õ+ (Λh) is uniruled. Since Õ

+ (Λd) ⊂ Mon2(Λ, h),
there is a dominant map Mh −→ Mγ

OG6,2d giving us uniruledness for the moduli space.

Let Mtor

h be a toroidal compactification of Mh. Toroidal compactifications of locally
symmetric manifolds of type O(2, n) are normal and have at worst finite-quotient-
singularities, in particular, rational and Q-factorial, see [AMRT10]. Riemann-Hurwitz
shows that KMtor

h
= 5λ− 1

2
Br (π)− bδ, where δ is the boundary divisor and the value of

b > 0 depends on the choice of the toroidal compactification and the ramification at

the boundary. Since λ is ample on the Baily-Borel compactification ϵ : Mtor

h −→ MBB

h ,

and MBB

h \Mh is one dimensional, we can choose a representative for the class (ϵ∗λ)4

which does not meet the boundary of Mtor

h . The curve class (ϵ∗λ)4 is nef and intersects

trivially δ. Let η : Yh −→ Mtor

h be a smoothing. Note that η∗(ϵ∗λ)4 is nef and if
KYh

· η∗(ϵ∗λ)4 < 0, then KYh
is not pseudo-effective. By [BDPP13] this would imply

that Yh (and therefore Mh) is birationally covered by rational curves. Note that the
projection formula and the fact that δ · (ϵ∗λ)4 = 0 implies

KYh
· η∗ (ϵ∗λ)4 =

(
5λ− 1

2
Br (π)

)
· (ϵ∗λ)4 .

Since the curve (ϵ∗λ)4 does not intersect the boundary, if D ⊂ Mh is a divisor and D

the closure of D in Mtor

h , then, the intersection of (ϵ∗λ)4 with D is the degree of the

closure of D in Mh
BB

with respect to λ. Intersecting with (ϵ∗λ)4 defines a linear map
given by the Baily–Borel degree deg : PicQ (Mh) −→ Q. Theorem 2.2 gives us then that

(23)
∑
m,µ

(
H−m,µ · (ϵ∗λ)4

)
qmeµ ∈ Mod◦

7
2
,Λh
.

Further, by [Kud03, Theorem I] (see also [Kud03, Corollary 4.12] this is a multiple of
the Eisenstein series E 7

2
,Λh

defined in (5). Now nefness implies

(24) H−m,µ · (ϵ∗λ)4 = −C · cm,µ(E 7
2
,Λd

) and (ϵ∗λ)5 = C · c0,0(E 7
2
,Λd

),

where cm,µ ∈
(
Mod0

7
2
,Λd

)∨
is the (m,µ)-coefficient extraction functional, and C is a

positive constant. By Proposition 4.4 we have 1
4
H−1,0 ≤ 1

2
Br(πd) and (24) gives us

(25)(
5λ− 1

2
Br (πd)

)
·(ϵ∗λ)4 ≤

(
5λ− 1

4
H−1,0

)
·(ϵ∗λ)4 = C

(
5c0,0

(
E 7

2
,Λd

)
+

1

4
c−1,0

(
E 7

2
,Λd

))
.
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There is a concrete formula [BK01] for the coefficients of the Fourier expansion of
Eisenstein series. This has been implemented in SAGE by the fourth author [Wilb]. We
exhibit the highest cases for which we obtain a negative intersection product. When
γ = 1 and d = 12. In this case if we write E 7

2
,Λh

=
∑

µ∈D(Λh)
Eµ(q)eµ, then

E0(q) = 1− 272

13
q − 1472

13
q2 − 3390

13
q3 − 8204

13
q4 +O(q5).

In particular from (25) we obtain

KYh
· η∗ (ϵ∗λ)4 ≤ C ·

(
5− 272

52

)
< 0.

This gives us the theorem. When d = 4t− 1 and γ = 2, the highest degree for which we
obtain uniruledness is t = 12. In this case the E0 summand of E 7

2
,Λh

is

E0(q) = 1− 1052352

51911
q − 5438160

51911
q2 − 15409296

51911
q3 − 907200

1403
q4 +O(q5)

and

KYh
· η∗ (ϵ∗λ)4 ≤ C ·

(
5− 1052352

4 · 51911

)
< 0.

which leads to the same result. Similarly, when γ = 2 and d = 4t− 2 with t = 13 the
E0 component of the Eisenstein series of weight 7

2
corresponding to Λh is

E0(q) = 1− 108

5
q − 620

7
q2 +O(q3),

which leads to the same result. The lower-degree cases are done in the same way. □

7.1. Generalized Kummer case. Let (X,L) be a primitively polarized hyperkähler 2n-
fold where X is deformation equivalent to a fiber of the addition map A[n+1] −→ A on an
abelian surface. In this case the (H2(X,Z), qX) is isomorphic to Λ = U⊕3⊕A1(−(n+1))
and the monodromy group [Mon16], [Mar23, Theorem 1.4] is:

(26) Mon2 (Λ) =
{
g ∈ Ô+ (Λ)

∣∣∣χ(g) · det(g) = 1
}
,

where χ : Ô+ (Λ) −→ {±1} is the character defined by the action of Ô+ (Λ) on D(Λ).

Let h = c1(L) ∈ Λ, with ⟨h, h⟩ = 2d and divisibility γ. Since S̃O
+
(Λ) ⊂ Mon2 (Λ), up

to monodromy one can always assume h = γ(e+ tf)− aδ for appropriate t and a, where
δ is the generator of A1(−(n+ 1)).

For γ = 1, 2, the lattice Λh is in the form U⊕2 ⊕Qd (resp. Qt with d = 4t− (n+ 1))
where

Qd = Zℓ+Zδ =
(

−2d 0
0 −2(n+ 1)

)
and Qt = Zu+Zv =

(
−2t (n+ 1)

(n+ 1) −2(n+ 1)

)
.
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Lemma 7.3. For γ = 1, 2, the polarized monodromy group Mon2 (Λ, h) ⊂ O+ (Λh) is a

double extension of S̃O
+
(Λh). More precisely,

Mon2 (Λ, h) = ⟨S̃O
+
(Λh), σκ⟩, where κ =

{
δ if γ = 1,

v if γ = 2.

For γ ≥ 3 there is equality Mon2 (Λ, h) = S̃O
+
(Λh).

Proof. Observe that, for any g ∈ O (Λ, h), we have det(g) = det(g |Λh
). Then the

statement is essentially [ABL24, Lemma 3.7]. For γ = 1, 2 we also need to prove that
σκ ∈ Mon2 (Λ) via the restriction: since det(σκ) = −1, this is equivalent to prove

that, if we see κ as an element of Λ, we have −σκ ∈ Õ+(Λ) i.e. χ(σκ) = −1. Since
κ = 3(γ − 1)f − δ, this can be checked via an explicit computation. □

For γ = 1, 2, the period domain Mγ
Kumn,2d

= DΛh
/Mon2 (Λ, h) is a partial compactifi-

cation of the moduli space of hyperkähler 2n-folds of generalized Kummer type with a
primitive polarization of degree 2d and divisibility γ. It is always irreducible [Ono22]
and never empty for γ = 1 (the split case). When γ = 2 it is non-empty only for
d ≡ −(n+ 1) (mod 4).

Lemma 7.4. For d = 1 and γ = 1, 2, one has

(27)
〈
Mon2 (Λ, h) ,−Id

〉
= Ô+ (Λh) ,

or equivalently PMon2 (Λ, h) = PÔ+ (Λh) = PÕ+ (Λh).

Proof. Note that, under our hypothesis, −σκ ∈ Õ+ (Λh). For γ = 1, this holds since
ℓ∗ = −ℓ∗. For γ = 2, observe that |D(Λh)| = d · (n+ 1) = n+ 1, hence D(Λh) = ⟨κ∗⟩
since κ = v is primitive with divisibility n+1; clearly σκ(κ∗) = −κ∗. Now we prove (27)

under the more general hypothesis that −σκ ∈ Õ+ (Λ2) i.e. χ(σκ) = −1.

We can write Ô+ (Λh) =
⋃

i,j∈{−1,+1}Mi,j, where Mi,j is the set of isometries g ∈
Ô+ (Λ2) such that (χ(g), det(g)) = (i, j). Clearly S̃O

+
(Λh) = M+1,+1 and, under our

hypothesis, σκ · ŜO
+
(Λh) =M−1,−1. By Lemma 7.3 then Mon2 (Λ, h) =M+1,+1∪M−1,−1.

Now − Id ∈M−1,1, since Λh has even rank, hence − Id ·Mi,j =M−i,j and (27) follows. □

Theorem 7.5. The moduli spaces M1
Kumn,2

and M2
Kumn,2

of hyperkähler 2n-folds of
generalized Kummer type with polarization of degree 2 and divisibility γ = 1, 2 are
uniruled in the following cases:

(i) when γ = 1 for n ≤ 15 and n = 17, 20,

(ii) when γ = 2 for t ≤ 11 and t = 13, 15, 17, 19, where n = 4t− 2.

Proof. We show that DΛh

/
Õ+(Λh) is uniruled and by Lemma 7.4 we conclude uniruled-

ness for Mγ
Kum2,2

. As in the proof of Theorem 7.2, from Proposition 4.4 we have that
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the intersection of (ϵ∗λ)3 with the canonical bundle KY on a smooth model of a toroidal
compactification is bounded from above by

(28) KY · (ϵ∗λ)3 ≤
(
4λ− 1

4
(H−1,0)

)
· (ϵ∗λ)3 = 4c0,0(E) +

1

4
c−1,0(E),

where E = E3,Λh
is the Eisenstein series corresponding to Λh. Again, we exhibit only

one case. If E =
∑

µ∈D(Λh)
Eµ(q)eµ, one computes [Wilb]:

E0(q) =

{
1− 4250

263
q − 12600

263
q2 +O(q3) if n = 20 and γ = 1

1− 130
7
q − 288q2 +O(q3) if n = 4t− 2 with t = 19 and γ = 2.

From (28) we obtain KY · (ϵ∗λ)3 < 0. Since (ϵ∗λ)3 is nef, the canonical class KY in
both cases sits outside the respective pseudo-effective cones. Uniruledness follows from
[BDPP13]. □

We remark here that (see Lemma 7.4) the modular variety

M2
Kum2,2

= DΛh

/
Õ+ (Λh) ,

where Λh = U⊕2 ⊕ A2(−1), is known to be rational [WW21, Theorem 5.4]. More
concretely, there is a finite union of Heegner divisors H, see [WW21, Equation 5.8], such

that the algebra of meromorphic modular forms M!
∗

(
Õ+(Λh),H

)
, that is, meromorphic

sections of λ⊗k with k ∈ Z and poles supported along H is finitely generated by

forms of positive weight. By work of Looijenga [Loo03] the projective variety X̂ =

Proj
(
⊕k≥0M

!
k

(
Õ+,H

))
is a compactification of D

/
Õ+ −H that interpolates between

the Baily–Borel and toroidal compactifications. When the generators are relation-free,
as it is shown in [WW21] for Λh = U⊕2 ⊕ A2(−1), the resulting ring is a polynomial

algebra with generators of mixed weights. In this case X̂ is a weighted projective
space, in particular rational. The same holds for some of the first OG6 cases. Indeed
if Λh = U⊕2 ⊕ A1(−1)⊕3 or Λh = U⊕2 ⊕ A1(−1)⊕1 ⊕ A2(−1), then [WW21, Theorem

5.4] implies that the resulting modular varieties DΛh

/
Õ+(Λh) are also rational. We

summarize the results relevant for this paper:

Theorem 7.6 (Theorem 5.4 in [WW21]). The moduli space M2
Kum2,2

is rational and

the moduli spaces M2
OG6,6 and M1

OG6,2 are unirational.

Proof. This is an immediate consequence of [WW21, Theorem 5.4] together with Lemmas
7.1 and 7.4. □

We observe that the strategy in Theorem 7.5 fails for γ ≥ 3. In this case, a nef curve
intersecting the canonical class negatively would have to intersect the boundary of a
toroidal compactification. The reason for this is that the canonical class sits always in
the interior of the NL-cone, even further, it is the restriction of an ample class on the
Baily–Borel model.
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Proposition 7.7. For γ = 3, 6, when non-empty, the canonical class of every component
M of the moduli space Mγ

Kum2,2d
is given by

KM = 4λ.

In particular, it lies in the interior of the NL-cone and it has positive intersection with
any complete curve not intersecting the boundary of a toroidal compactification.

Proof. By Lemma 7.3, the branch divisor of the modular projection π : DΛh
−→

DΛh

/
Mon2 (Λ, h) is trivial, since both σρ and −σρ have negative determinant on a

lattice of even rank, see Equation (14). □

Finally, we describe the structure of the NL-cone for some of these moduli spaces:

Theorem 7.8. The NL-cones in terms of the minimal set of generating rays for the
moduli spaces M1

Kum2,2
,M2

Kum2,2
are given by:

EffNL
(
M1

Kum2,2

)
=
〈
P− 1

12
,δ∗ , P− 1

4
,ℓ∗

〉
Q≥0

and EffNL
(
M2

Kum2,2

)
= Q≥0P− 1

3
, v
3
.

Further, the moduli space
(
M2

Kum2,2

)◦
parameterizing polarized hyperkähler fourfolds

with polarization of degree 2 and divisibility 2 is quasi-affine.

Proof. The structure of the cones follows from Theorem 1.1 and the results of Section 3
together with [Wila]. Recall that the period map [Ver13]

(29)
(
Mγ

Kum2,2d

)◦ −→ DΛh

/
Mon (Λ, h) = Mγ

Kum2,2d

is an open embedding. In particular, if the complementMγ
Kum2,2d

−
(
Mγ

Kum2,2d

)◦
contains

an ample divisor, then
(
Mγ

Kum2,2d

)◦
is quasi-affine. When γ = 2 and d = 1, it is enough

to show that the complement contains a divisional component of NL-type. Indeed, if a
primitive Heegner divisor Pρ is contained in the complement of the image of (29), then

Pρ must be a positive rational multiple of λ, in particular, ample. Then,
(
M2

Kum2,2

)◦
is

an open in the complement of a hyperplane in D
/
Õ+

BB

⊂ PN , i.e. quasi-affine.

Recall that if (X,H) is a polarized hyperkähler fourfold of Kum2-type, then(
H2 (X,Z) , qX

) ∼= Λ

with Λ = U⊕3 ⊕ A1(−3). We call δ the generator of the last factor and h = c1(H). By
[Yos16], see also [MTW18, Page 452], an ample class h cannot lie in the orthogonal
complement in H1,1(X,R) of classes ρ ∈ NS(X) whose square is −6 and divisibility in
H2(X,Z) is 2, 3 or 6. In particular, if such a class is orthogonal to h, then Dρ defines a
hyperplane in DΛh

and the image of the period map misses the corresponding divisor
Pρ. Singling out classes in H1,1(X,Z) whose orthogonal complements give the chamber
decomposition of the positive cone C(X) ⊂ H1,1(X,R) is a general method to describe
the complement of the image of the period map, see for instance [DM19, Theorem 6.1].
In the second case of the theorem, it is enough to show that there exists an integral class
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ρ ∈ Λh of square ⟨ρ, ρ⟩ = −6 and divisibility in Λ given by divΛ(ρ) ∈ {2, 3, 6}. Since

S̃O
+
(Λ) ⊂ Mon2(Λ), one can assume h = 2(e+ f)− δ, and taking ρ = 3f − δ one has

the desired property. In this case the divisibility in Λ is 3, and the missed primitive
Heegner divisor in M2

Kum2,2
is Pρ = P− 1

3
, v
3
. □
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[BM19] J. H. Bruinier and M. Möller, Cones of Heegner divisors, J. Algebraic Geom. 28 (2019),

no. 3, 497–517.
[Bor98] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math.

132 (1998), no. 3, 491–562.
[Bor99] , The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J. 97

(1999), no. 2, 219–233.
[Bru02a] J. H. Bruinier, Borcherds products on O(2, l) and Chern classes of Heegner divisors,

Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002.
[Bru02b] J.H. Bruinier, On the rank of Picard groups of modular varieties attached to orthogonal

groups, Compositio Math. 133 (2002), no. 1, 49–63.
[Bru14] J. H. Bruinier, On the converse theorem for Borcherds products, J. Algebra 397 (2014),

315–342.
[DM19] O. Debarre and E. Macr̀ı, On the period map for polarized hyperkähler fourfolds, Int.

Math. Res. Not. IMRN 22 (2019), 6887–6923.
[DM22] , Complete curves in the moduli space of polarized k3 surfaces and hyper-kähler

manifolds, 2022. https://arxiv.org/abs/2108.00429.
[DV10] O. Debarre and C. Voisin, Hyper-kähler fourfolds and grassmann geometry, J. Reine

Angew. Math. 649 (2010), 63–87.
[EH87] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of

genus ≥ 23, Invent. Math. 90 (1987), no. 2, 359–387.

https://arxiv.org/abs/2307.07391
https://arxiv.org/abs/2212.12586
https://arxiv.org/abs/2108.00429


38 IGNACIO BARROS, PIETRO BERI, LAURE FLAPAN, AND BRANDON WILLIAMS

[NIST:DLMF] NIST Digital Library of Mathematical Functions. F. W. J. Olver, A. B. Olde Daalhuis,
D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders,
H. S. Cohl, and M. A. McClain, eds.

[FV18] G. Farkas and A. Verra, The universal K3 surface of genus 14 via cubic fourfolds, J.
Math. Pures Appl. (9) 111 (2018), 1–20. MR3760746

[FV21] , The unirationality of the moduli space of K3 surfaces of genus 22, Math. Ann.
380 (2021), 953–973.

[GHS07] V. A. Gritsenko, K. Hulek, and G. K. Sankaran, The Kodaira dimension of the moduli
of K3 surfaces, Invent. Math. 169 (2007), no. 3, 519–567.

[GHS09] V. Gritsenko, K. Hulek, and G. K. Sankaran, Abelianisation of orthogonal groups and the
fundamental group of modular varieties, Journal of Algebra 322 (2009), no. 2, 463–478.

[GHS10] , Moduli spaces of irreducible symplectic manifolds, Compos. Math. 146 (2010),
no. 2, 404–434.

[GHS13] , Moduli of K3 surfaces and irreducible symplectic manifolds, Handbook of moduli.
Vol. I, 2013, pp. 459–526.

[HM82] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves,
Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton.

[IR01] A. Iliev and K. Ranestad, K3 surfaces of genus 8 and varieties of sums of powers of
cubic fourfolds, Trans. Amer. Math. Soc. 353 (2001), 1455–1468.

[IR07] , Addendum to K3 surfaces of genus 8 and varieties of sums of powers of cubic
fourfolds, C. R. Acad. Bulgare Sci. 60 (2007), 1265–1270.

[Kud03] S.S. Kudla, Integrals of Borcherds forms, Compositio Math. 137 (2003), no. 3, 293–349.
[Lan00] L. J. Landau, Bessel functions: monotonicity and bounds, J. London Math. Soc. (2) 61

(2000), no. 1, 197–215.
[Loo03] E. Looijenga, Compactifications defined by arrangements. II. Locally symmetric varieties

of type IV, Duke Math. J. 119 (2003), no. 3, 527–588.
[Ma19] S. Ma, Quasi-pullback of Borcherds products, Bull. Lond. Math. Soc. 51 (2019), no. 6,

1061–1078.
[Mar11] E. Markman, A survey of Torelli and monodromy results for holomorphic-symplectic

varieties, Complex and differential geometry, 2011, pp. 257–322.
[Mar23] , The monodromy of generalized Kummer varieties and algebraic cycles on their

intermediate Jacobians, J. Eur. Math. Soc. (JEMS) 25 (2023), 231–321.
[McG03] W. J. McGraw, The rationality of vector valued modular forms associated with the Weil

representation, Math. Ann. 326 (2003), no. 1, 105–122.
[Mon13] G. Mongardi, Automorphisms of hyperkähler manifolds, PhD thesis, 2013.
[Mon16] , On the monodromy of irreducible symplectic manifolds, Algebr. Geom. 3 (2016),

385–391.
[MP13] D. Maulik and R. Pandharipande, Gromov-Witten theory and Noether-Lefschetz theory,

A celebration of algebraic geometry, 2013, pp. 469–507.
[MR21] G. Mongardi and A. Rapagnetta, Monodromy and birational geometry of O’Grady’s

sixfolds, J. Math. Pures Appl. (9) 146 (2021), 31–68.
[MTW18] G. Mongardi, K. Tari, and M. Wandel, Prime order automorphisms of generalised

Kummer fourfolds, Manuscripta Math. 155 (2018), no. 3-4, 449–469. MR3763414
[Muk06] S. Mukai, Polarized K3 surfaces of genus thirteen, Moduli spaces and arithmetic

geometry, 2006, pp. 315–326.
[Muk10] , Curves and symmetric spaces, II, Ann. of Math. (2) 172 (2010), no. 3, 1539–

1558.
[Muk16] , K3 surfaces of genus sixteen, Minimal models and extremal rays (Kyoto, 2011),

2016, pp. 379–396.
[Muk88] , Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, Algebraic geometry and

commutative algebra, Vol. I, 1988, pp. 357–377.



CONES OF NL DIVISORS 39

[Muk92] , Polarized K3 surfaces of genus 18 and 20, Complex projective geometry (Trieste,
1989/Bergen, 1989), 1992, pp. 264–276.

[O’G03] K. G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom.
12 (2003), 435–505.

[O’G06] , Irreducible symplectic 4-folds and Eisenbud–Popescu–Walter sextics, Duke Math.
J. 134 (2006), 99–137.

[Ono22] C. Onorati, Connected components of moduli spaces of irreducible holomorphic symplectic
manifolds of kummer type, Rend. Mat. Appl. 43 (2022), no. 7, 251–266.

[Pet15] A. Peterson, Modular forms on the moduli space of polarised K3 surfaces, Ph.D. Thesis,
2015. Available at http://hdl.handle.net/11245/2.162072.

[Rap08] A. Rapagnetta, On the Beauville form of the known irreducible symplectic varieties,
Math. Ann. 340 (2008), 77–95.

[Sha80] J. Shah, A complete moduli space for K3 surfaces of degree 2, Ann. of Math. 112 (1980),
no. 3, 485–510.

[Son23] J. Song, On the image of the period map for polarized hyperkähler manifolds, Int. Math.
Res. Not. IMRN 13 (2023), 11404–11431.

[Ver13] M. Verbitsky,Mapping class group and a global Torelli theorem for hyperkähler manifolds,
Duke Math. J. 162 (2013), no. 15, 2929–2986. Appendix A by Eyal Markman.
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8. Appendix

Here we list various computations of generating rays for NL-cones, branch divisors,
and NL-positivity of the canonical class for moduli spaces of hyperkähler varieties.

Table 1: Generating rays of the NL-cone of F2d

d generating rays of EffNL (F2d) # gen. rays dimQ Pic(F2d)
1 P−1,0, P− 1

4
,ℓ∗ 2 2

2 P−1,0, P− 1
8
,ℓ∗ , P− 1

2
,2ℓ∗ 3 3

3 P−1,0, P− 1
12

,ℓ∗ , P− 1
3
,2ℓ∗ , P− 3

4
,3ℓ∗ 4 4

4 P−1,0, P− 1
16

,ℓ∗ , P− 1
4
,2ℓ∗ , P− 9

16
,3ℓ∗ , P−1,4ℓ∗ 5 4

5 P−1,0, P− 1
20

,ℓ∗ , P− 1
5
,2ℓ∗ , P− 9

20
,3ℓ∗ , P− 4

5
,4ℓ∗ , P− 1

4
,5ℓ∗ 6 6

6 P−1,0, P− 1
24

,ℓ∗ , P− 1
6
,2ℓ∗ , P− 3

8
,3ℓ∗ , P− 2

3
,4ℓ∗ , P− 1

24
,5ℓ∗ 7 7

P− 1
2
,6ℓ∗

7 P−1,0, P− 1
28

,ℓ∗ , P− 1
7
,2ℓ∗ , P− 9

28
,3ℓ∗ , P− 4

7
,4ℓ∗ , P− 25

28
,5ℓ∗ 8 7

P− 2
7
,6ℓ∗ , P− 3

4
,7ℓ∗

8 P−1,0, P− 1
32

,ℓ∗ , P− 33
32

,ℓ∗ , P− 1
8
,2ℓ∗ , P− 9

32
,3ℓ∗ , P− 1

2
,4ℓ∗ 10 8

P− 25
32

,5ℓ∗ , P− 1
8
,6ℓ∗ , P− 17

32
,7ℓ∗ , P−1,8ℓ∗

9 P−1,0, P− 1
36

,ℓ∗ , P− 37
36

,ℓ∗ , P− 1
9
,2ℓ∗ , P− 10

9
,2ℓ∗ , P− 1

4
,3ℓ∗ 13 9

P− 4
9
,4ℓ∗ , P− 25

36
,5ℓ∗ , P−1,6ℓ∗ , P− 13

36
,7ℓ∗ , P− 7

9
,8ℓ∗ , P− 1

4
,9ℓ∗ ,

P− 5
4
,9ℓ∗

10 P−1,0, P− 1
40

,ℓ∗ , P− 1
10

,2ℓ∗ , P− 9
40

,3ℓ∗ , P− 2
5
,4ℓ∗ , P− 5

8
,5ℓ∗ 11 10

P− 9
10

,6ℓ∗ , P− 9
40

,7ℓ∗ , P− 3
5
,8ℓ∗ , P− 1

40
,9ℓ∗ , P− 1

2
,10ℓ∗

11 P−1,0, P− 1
44

,ℓ∗ , P− 45
44

,ℓ∗ , P− 1
11

,2ℓ∗ , P− 12
11

,2ℓ∗ , P− 9
44

,3ℓ∗ 16 11

P− 53
44

,3ℓ∗ , P− 4
11

,4ℓ∗ , P− 25
44

,5ℓ∗ , P− 9
11

,6ℓ∗ , P− 5
44

,7ℓ∗ , P− 49
44

,7ℓ∗ ,

P− 5
11

,8ℓ∗ , P− 37
44

,9ℓ∗ , P− 3
11

,10ℓ∗ , P− 3
4
,11ℓ∗

12 P−1,0, P− 1
48

,ℓ∗ , P− 49
48

,ℓ∗ , P− 1
12

,2ℓ∗ , P− 3
16

,3ℓ∗ , P− 1
3
,4ℓ∗ 15 12

P− 25
48

,5ℓ∗ , P− 3
4
,6ℓ∗ , P− 1

48
,7ℓ∗ , P− 49

48
,7ℓ∗ , P− 1

3
,8ℓ∗ , P− 11

16
,9ℓ∗ ,

P− 1
12

,10ℓ∗ , P− 25
48

,11ℓ∗ , P−1,12ℓ∗

13 P−1,0, P− 1
52

,ℓ∗ , P− 53
52

,ℓ∗ , P− 1
13

,2ℓ∗ , P− 9
52

,3ℓ∗ , P− 4
13

,4ℓ∗ 16 12

P− 25
52

,5ℓ∗ , P− 9
13

,6ℓ∗ , P− 49
52

,7ℓ∗ , P− 3
13

,8ℓ∗ , P− 29
52

,9ℓ∗ , P− 12
13

,10ℓ∗ ,

P− 17
52

,11ℓ∗ , P− 10
13

,12ℓ∗ , P− 1
4
,13ℓ∗ , P− 5

4
,13ℓ∗

14 P−1,0, P− 1
56

,ℓ∗ , P− 57
56

,ℓ∗ , P− 1
14

,2ℓ∗ , P− 9
56

,3ℓ∗ , P− 2
7
,4ℓ∗ 18 14

P− 25
56

,5ℓ∗ , P− 9
14

,6ℓ∗ , P− 7
8
,7ℓ∗ , P− 1

7
,8ℓ∗ , P− 25

56
,9ℓ∗ , P− 11

14
,10ℓ∗ ,

P− 9
56

,11ℓ∗ , P− 4
7
,12ℓ∗ , P− 1

56
,13ℓ∗ , P− 57

56
,13ℓ∗ , P− 1

2
,14ℓ∗ , P− 3

2
,14ℓ∗

15 P−1,0, P− 1
60

,ℓ∗ , P− 61
60

,ℓ∗ , P− 1
15

,2ℓ∗ , P− 16
15

,2ℓ∗ , P− 3
20

,3ℓ∗ 20 15

P− 4
15

,4ℓ∗ , P− 5
12

,5ℓ∗ , P− 3
5
,6ℓ∗ , P− 49

60
,7ℓ∗ , P− 1

15
,8ℓ∗ , P− 16

15
,8ℓ∗ ,

P− 7
20

,9ℓ∗ , P− 2
3
,10ℓ∗ , P− 1

60
,11ℓ∗ , P− 61

60
,11ℓ∗ , P− 2

5
,12ℓ∗ , P− 49

60
,13ℓ∗ ,

P− 4
15

,14ℓ∗ , P− 3
4
,15ℓ∗
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16 P−1,0, P− 1
64

,ℓ∗ , P− 65
64

,ℓ∗ , P− 1
16

,2ℓ∗ , P− 17
16

,2ℓ∗ , P− 9
64

,3ℓ∗ 20 14

P− 1
4
,4ℓ∗ , P− 25

64
,5ℓ∗ , P− 9

16
,6ℓ∗ , P− 49

64
,7ℓ∗ , P−1,8ℓ∗ , P− 17

64
,9ℓ∗ ,

P− 9
16

,10ℓ∗ , P− 57
64

,11ℓ∗ , P− 1
4
,12ℓ∗ , P− 41

64
,13ℓ∗ , P− 1

16
,14ℓ∗ , P− 17

16
,14ℓ∗ ,

P− 33
64

,15ℓ∗ , P−1,16ℓ∗

17 P−1,0, P− 1
68

,ℓ∗ , P− 69
68

,ℓ∗ , P− 1
17

,2ℓ∗ , P− 18
17

,2ℓ∗ , P− 9
68

,3ℓ∗ 23 16

P− 77
68

,3ℓ∗ , P− 4
17

,4ℓ∗ , P− 25
68

,5ℓ∗ , P− 9
17

,6ℓ∗ , P− 49
68

,7ℓ∗ , P− 16
17

,8ℓ∗ ,

P− 13
68

,9ℓ∗ , P− 8
17

,10ℓ∗ , P− 53
68

,11ℓ∗ , P− 2
17

,12ℓ∗ , P− 19
17

,12ℓ∗ , P− 33
68

,13ℓ∗ ,

P− 15
17

,14ℓ∗ , P− 21
68

,15ℓ∗ , P− 13
17

,16ℓ∗ , P− 1
4
,17ℓ∗ , P− 5

4
,17ℓ∗

18 P−1,0, P− 1
72

,ℓ∗ , P− 73
72

,ℓ∗ , P− 1
18

,2ℓ∗ , P− 19
18

,2ℓ∗ , P− 1
8
,3ℓ∗ 25 17

P− 2
9
,4ℓ∗ , P− 11

9
,4ℓ∗ , P− 25

72
,5ℓ∗ , P− 1

2
,6ℓ∗ , P− 49

72
,7ℓ∗ , P− 8

9
,8ℓ∗ ,

P− 1
8
,9ℓ∗ , P− 9

8
,9ℓ∗ , P− 7

18
,10ℓ∗ , P− 49

72
,11ℓ∗ , P−1,12ℓ∗ , P− 25

72
,13ℓ∗ ,

P− 13
18

,14ℓ∗ , P− 1
8
,15ℓ∗ , P− 5

9
,16ℓ∗ , P− 1

72
,17ℓ∗ , P− 73

72
,17ℓ∗ , P− 1

2
,18ℓ∗ ,

P− 3
2
,18ℓ∗

19 P−1,0, P− 1
76

,ℓ∗ , P− 77
76

,ℓ∗ , P− 1
19

,2ℓ∗ , P− 20
19

,2ℓ∗ , P− 9
76

,3ℓ∗ 27 17

P− 85
76

,3ℓ∗ , P− 4
19

,4ℓ∗ , P− 23
19

,4ℓ∗ , P− 25
76

,5ℓ∗ , P− 9
19

,6ℓ∗ , P− 49
76

,7ℓ∗ ,

P− 16
19

,8ℓ∗ , P− 5
76

,9ℓ∗ , P− 81
76

,9ℓ∗ , P− 6
19

,10ℓ∗ , P− 45
76

,11ℓ∗ , P− 17
19

,12ℓ∗ ,

P− 17
76

,13ℓ∗ , P− 93
76

,13ℓ∗ , P− 11
19

,14ℓ∗ , P− 73
76

,15ℓ∗ , P− 7
19

,16ℓ∗ , P− 61
76

,17ℓ∗ ,

P− 5
19

,18ℓ∗ , P− 24
19

,18ℓ∗ , P− 3
4
,19ℓ∗

20 P−1,0, P−2,0, P− 1
80

,ℓ∗ , P− 81
80

,ℓ∗ , P− 1
20

,2ℓ∗ , P− 21
20

,2ℓ∗ 28 19

P− 9
80

,3ℓ∗ , P− 89
80

,3ℓ∗ , P− 1
5
,4ℓ∗ , P− 5

16
,5ℓ∗ , P− 9

20
,6ℓ∗ , P− 49

80
,7ℓ∗ ,

P− 4
5
,8ℓ∗ , P− 1

80
,9ℓ∗ , P− 81

80
,9ℓ∗ , P− 1

4
,10ℓ∗ , P− 41

80
,11ℓ∗ , P− 4

5
,12ℓ∗ ,

P− 9
80

,13ℓ∗ , P− 89
80

,13ℓ∗ , P− 9
20

,14ℓ∗ , P− 13
16

,15ℓ∗ , P− 1
5
,16ℓ∗ , P− 49

80
,17ℓ∗ ,

P− 1
20

,18ℓ∗ , P− 21
20

,18ℓ∗ , P− 41
80

,19ℓ∗ , P−1,20ℓ∗

Table 2. Irreducible components of ϕ∗
rP−1,0 and ϕ∗

rP− 1
4
,ℓ∗ under

ϕr : F2dr2 → F2

r Components of ϕ∗
rP−1,0 Components of ϕ∗

rP− 1
4
,ℓ∗

2 P−1,0, P−1,4ℓ′∗ P− 1
4
,2ℓ′∗

3 P−1,0, P− 1
9
,2ℓ′∗
, P−1,6ℓ′∗ P− 1

4
,3ℓ′∗
, P− 1

4
,9ℓ′∗

4 P−1,0, P−1,8ℓ′∗ , P−1,16ℓ′∗ P− 1
4
,4ℓ′∗
, P− 1

4
,12ℓ′∗

5 P−1,0, P−1,10ℓ′∗ , P−1,20ℓ′∗ , P− 1
25

,2ℓ′∗
P− 1

4
,5ℓ′∗
, P− 1

4
,15ℓ′∗

, P− 1
4
,25ℓ′∗

6 P−1,0, P−1,12ℓ′∗ , P−1,24ℓ′∗ , P−1,36ℓ′∗ P− 1
4
,6ℓ′∗
, P− 1

4
,18ℓ′∗

, P− 1
4
,30ℓ′∗

7 P−1,0, P− 1
49

,2ℓ′∗
, P−1,14ℓ′∗ , P−1,28ℓ′∗ , P−1,42ℓ′∗ , P− 1

4
,7ℓ′∗
, P− 1

4
,21ℓ′∗

, P− 1
4
,35ℓ′∗

, P− 1
4
,49ℓ′∗

8 P−1,0, P−1,16ℓ′∗ , P− 1
9
,4ℓ′∗
, P−1,32ℓ′∗ , P−1,48ℓ′∗ , P−1,64ℓ′∗ P− 1

4
,8ℓ′∗
, P− 1

4
,24ℓ′∗

, P− 1
4
,40ℓ′∗

, P− 1
4
,56ℓ′∗
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Table 3. Ramification divisor of πd : D −→ F2d.

d in terms of P ’s in terms of H’s

1 1
2

(
P−1,0 + P− 1

4
,ℓ∗ + P− 1

4
,δ∗

)
1
2
H−1,0

2 1
2

(
P−1,0 + P− 1

4
,δ∗ + P− 1

2
,2ℓ∗

)
+ P− 1

8
,ℓ∗

1
2

(
H−1,0 +H− 1

2
,2ℓ∗

)
3 1

2

(
P−1,0 + P− 1

4
,δ∗

)
+ P− 1

3
,2ℓ∗ + P− 1

12
,ℓ∗

1
2
H−1,0 +H− 1

3
,2ℓ∗

4 1
2

(
P−1,0 + P− 1

4
,δ∗ + P− 1

4
,4ℓ∗+δ∗

)
+ P− 1

4
,2ℓ∗ + P− 1

16
,ℓ∗

1
2
H−1,0 +H− 1

4
,2ℓ∗

5 1
2

(
P−1,0 + P− 1

4
,δ∗ + P− 1

4
,5ℓ∗

)
+ P− 1

5
,2ℓ∗ + P− 1

20
,ℓ∗ + P− 1

20
,4ℓ∗+δ∗

1
2
H−1,0 +H− 1

5
,2ℓ∗

6 1
2

(
P−1,0 + P− 1

4
,δ∗

)
+ P− 1

6
,2ℓ∗ + P− 1

24
,ℓ∗ + P− 1

24
,5ℓ∗

1
2
H−1,0 +H− 1

6
,2ℓ∗

Table 4. Generating rays of the NL-cone of M1
K3[2],2d

with d ≤ 5

d generating rays of EffNL
(
M1

K3[2],2d

)
Picard rank position of K

1 P−1,0, P− 1
4
,ℓ∗ , P− 1

4
,δ∗ , P− 1

2
,ℓ∗+δ∗ 4 out

2 P−1,0, P− 1
8
,ℓ∗ , P− 9

8
,ℓ∗ , P− 1

4
,δ∗ , P− 5

4
,δ∗ , P− 3

8
,ℓ∗+δ∗ , 6 in

P− 1
2
,2ℓ∗ , P− 3

4
,2ℓ∗+δ∗

3 P−1,0, P− 1
12

,ℓ∗ , P− 13
12

,ℓ∗ , P− 1
4
,δ∗ , P− 1

3
,ℓ∗+δ∗ , P− 1

3
,2ℓ∗ , 7 in

P− 7
12

,2ℓ∗+δ∗ , P− 3
4
,3ℓ∗ , P−1,3ℓ∗+δ∗

4 P−1,0, P− 1
16

,ℓ∗ , P− 17
16

,ℓ∗ , P− 1
4
,δ∗ , P− 5

16
,ℓ∗+δ∗ , P− 1

4
,2ℓ∗ , 9 in

P− 5
4
,2ℓ∗ , P− 1

2
,2ℓ∗+δ∗ , P− 9

16
,3ℓ∗ , P− 13

16
,3ℓ∗+δ∗ , P−1,4ℓ∗ ,

P− 1
4
,4ℓ∗+δ∗

5 P−1,0, P− 1
20

,ℓ∗ , P− 21
20

,ℓ∗ , P− 1
4
,δ∗ , P− 3

10
,ℓ∗+δ∗ , P− 1

5
,2ℓ∗ , 12 in

P− 6
5
,2ℓ∗ , P− 9

20
,2ℓ∗+δ∗ , P− 9

20
,3ℓ∗ , P− 7

10
,3ℓ∗+δ∗ , P− 4

5
,4ℓ∗ ,

P− 1
20

,4ℓ∗+δ∗ , P− 21
20

,4ℓ∗+δ∗ , , P− 1
4
,5ℓ∗ , P− 5

4
,5ℓ∗ , P− 1

2
,5ℓ∗+δ∗
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Table 5. Generating rays of the NL-cone of M2
K3[2],8t−2

with t ≤ 5

t generating rays of EffNL
(
M2

K3[2],8t−2

)
Picard rank position of K

1 P−1,0, P− 1
3
,
(2u+v)∗

3

2 out

2 P−1,0, P− 1
7
,
(2u+v)∗

7

, P
− 4

7
,
(4u+2v)∗

7

, P− 2
7
,
(6u+3v)∗

7

4 in

3 P−1,0, P− 3
11

,
(u+6v)∗

11

, P
− 1

11
,
(2u+v)∗

11

, P− 12
11

,
(2u+v)∗

11

, 6 in

P− 4
11

,
(4u+2v)∗

11

, P− 9
11

,
(6u+3v)∗

11

, P− 5
11

,
(8u+4v)∗

11

4 P−1,0, P− 2
3
,u+2v

3
, P− 4

15
,u+8v

15
, P− 1

15
,
2u+v

15

, 8 in

P− 16
15

, 2u+v
15
, P− 2

5
, 3u+2v

5
, P− 3

5
, 3u+4v

5
, P− 4

15
, 4u+2v

15
,

P− 1
15

, 7u+11v
15

, P− 16
15

, 7u+11v
15

5 P−1,0, P− 5
19

,u+10v
19

, P− 1
19

, 2u+v
19
, P− 20

19
, 2u+v

19
, 9 in

P− 7
19

, 3u+11v
19

, P− 4
19

, 4u+2v
19

, P− 23
19

, 4u+2v
19

, P− 11
19

, 5u+12v
19

,

P− 9
19

, 6u+3v
19

, P− 17
19

, 7u+13v
19

P− 16
19

, 8u+4v
19

, P− 6
19

, 9u+14v
19
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