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Abstract. We apply differential operators to modular forms on orthogonal groups O(2, `) to construct

infinite families of modular forms on special cycles. These operators generalize the quasi-pullback. The

subspaces of theta lifts are preserved; in particular, the higher pullbacks of the lift of a (lattice-index) Jacobi
form φ are theta lifts of partial development coefficients of φ. For certain lattices of signature (2, 2) and (2, 3),

for which there are interpretations as Hilbert-Siegel modular forms, we observe that the higher pullbacks

coincide with differential operators introduced by Cohen and Ibukiyama.

1. Introduction

In this note we apply differential operators to modular forms on Grassmannians of signature (2, `) lattices
to construct modular forms on special cycles of arbitrary codimension. The simplest example of such an
operation is the pullback : if φ : L → Λ is an isometric embedding of lattices (which induces a map on
modular varieties) then one obtains a map φ∗ on modular forms by setting φ∗(F ) := F ◦ φ. Despite the
simple definition, pullbacks are a surprisingly useful tool for constructing modular forms.

The quasipullback is a renormalization of the pullback of F when φ∗F is identically zero. When L (or
rather its image under φ) has codimension 1 in Λ the quasipullback of F is essentially the leading term in
a Taylor expansion of F about the hypersurface defined by φ. The quasipullbacks, especially of the weight
12 Borcherds form Φ12 on the Grassmannian of II2,26, have seen important geometric applications, some of
which are discussed in Chapter 8 of [11].

The motivation of this note is to develop a framework of linear “higher pullback” maps PN , N ∈ N0 to
special cycles in which the true pullback is always P0 and the quasipullback of a modular form F to a Heegner
divisor on which F vanishes to order N is (up to scalar multiple) the N th pullback PNF . We also define
higher pullbacks to special cycles of arbitrary codimension; in this case, PNF should be understood as a
multilinear form which, to any N normal vectors v1, ..., vN ∈ L⊥⊗C, constructs an orthogonal modular form
PLNF (z; v1, ..., vn) on the modular variety attached to L using the Laplacian on L and the normal derivatives
along the vi:

Theorem 4.1. Let F be a modular form of weight k on the orthogonal Shimura variety attached to an
even lattice Λ, and let L ⊆ Λ be an even sublattice. For every order N ∈ N0, there are explicit differential
operators PLN depending linearly on v1, ..., vN ∈ L⊥ ⊗ C such that PLNF (z; v1, ..., vN ) is a modular form of
weight k +N on the Shimura variety attached to L and a cusp form if N ≥ 1.

Moreover, if F is the additive theta lift of a vector-valued modular form f(τ), then every value of PLNF
is also an additive theta lift. This makes it possible to compute the values PLNF quickly in many cases of
interest.

There are many instances in the literature where differential operators have been applied to construct
modular forms. This note is heavily inspired by the development coefficients of Eichler-Zagier ([9], Chapter 3)
which produce elliptic modular forms from the Taylor coefficients of a Jacobi form. Generalizing this in some
sense, Ibukiyama and Ibukiyama-Zagier ([14],[15],[16]) have applied differential operators involving higher
spherical polynomials, which generalize the classical Gegenbauer polynomials, to Hilbert-Siegel modular
forms. While the Gegenbauer polynomials also appear naturally in the setting of this note, it is not clear
to the author what role, if any, is played by the higher spherical polynomials in the context of orthogonal
modular forms. In another direction, there are several generalizations of the Rankin-Cohen brackets to
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multilinear operators on modular forms, including Rankin-Cohen brackets of (lattice-index) Jacobi forms
([3],[4]), on Siegel modular forms ([8],[14]) and on orthogonal modular forms [4].

This note is organized as follows. In section 2 we review modular forms on orthogonal groups and describe
their behavior under the holomorphic Laplace operator. In section 3 we define pullbacks to Heegner divisors
λ⊥ as Gegenbauer polynomials in the Laplace operator on λ⊥ and the directional derivative with respect to
λ, and in section 4 we generalize this to arbitrary codimension. In section 5 we define partial development
coefficients of lattice-index Jacobi forms and vector-valued modular forms and show that these fit into com-
mutative diagrams involving the theta lift. In section 6 we work out examples involving quadratic forms of
signature (2, 2) and (2, 3).

Acknowledgments. I thank Martin Raum for helpful comments, in particular his suggestion to consider
Example 6.5.

2. Orthogonal modular forms

2.1. The upper half-space. Let (Λ1, Q) be an even lattice of signature (2, `) for some ` ∈ N, with induced
bilinear form

〈x, y〉 = Q(x+ y)−Q(x)−Q(y).

The associated Hermitian symmetric domain is

D± =
{

norm-zero lines z ∈ P(Λ1 ⊗ C) such that 〈z, z〉 > 0
}
.

It splits into two connected components that we label D+ and D−.
We will almost always consider a special case which is better adapted to working with Fourier expansions:

we assume there is an even lattice (Λ, Q) of signature (1, `− 1) such that (Λ1, Q) = (Λ, Q)⊕ II1,1 where II1,1

is the even unimodular lattice of signature (1, 1). (Certainly one does not obtain all interesting orthogonal
modular varieties in this way; for example, certain compact Shimura curves arise from signature (2, 1)
lattices without isotropic vectors; but most interesting cases can at least be embedded in a lattice of this
type.) Without loss of generality one can take Λ = Z` with quadratic form Q(v) = 1

2v
TSv for a symmetric

integral matrix S with even diagonal and identify Λ1 = Z`+2 with the Gram matrix S1 =
(

0 0 1
0 S 0
1 0 0

)
, which is

written in blocks of size 1, `, 1.
Since Λ has signature (1, ` − 1) the set of positive-norm vectors in Λ ⊗ R splits into two connected

components, corresponding to the components of D±. Suppose one component P (the positive cone) has
been fixed. Then the orthogonal upper half-space attached to Λ is

HΛ = {z = x+ iy ∈ Λ⊗ C : y ∈ P},

and it embeds as an open dense subset of a component of D± (which we label D+) by

z 7→ span(−Q(z), z, 1).

The group G = SO+(Λ1⊗R), i.e. the connected component of the identity in the orthogonal group of Λ1⊗R,
acts on HΛ by Möbius transformations as follows. For any M ∈ G, understood as a matrix preserving S1,
and z ∈ HΛ there is a unique scalar j(M ; z) ∈ C× and vector w = M · z ∈ HΛ such that

M
(
−Q(z)
z
1

)
= j(M ; z)

(
−Q(w)
w
1

)
.

The modular group ΓΛ is the intersection of G with the discriminant kernel of Λ1. In other words,

ΓΛ = {M ∈ G : M acts trivially on Λ′1/Λ1}.

Elements M ∈ ΓΛ may be understood as those matrices M ∈ Z(`+2)×(`+2) such that MTS1M = S1 and
det(M) = 1 and (M − I)S−1

1 has integer entries.
It is difficult to produce generators of ΓΛ. However the differential operators we are concerned with behave

nicely under the entire Lie group G, for which one can give a system of generators with simple factors of
automorphy. The following result is well-known but we include it here for convenience.
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Proposition 2.1. The group G = SO+(Λ1 ⊗ R) is generated by operators of the following types.

(i) Translations: for any b ∈ Λ⊗ R, define Tb =

(
1 −bTS −Q(b)
0 I b
0 0 1

)
which maps z to z + b and has cocycle of

automorphy j(Tb; z) = 1.

(ii) Rotations: for any A ∈ SO+(Λ) which acts trivially on Λ′/Λ, define RA =
(

1 0 0
0 A 0
0 0 1

)
which maps z to Az

and has cocycle of automorphy j(RA; z) = 1.

(iii) Scalings: for any t ∈ R>0, define St =
(
t 0 0
0 I 0
0 0 t−1

)
which maps z to tz with cocycle of automorphy

j(St; z) = t−1.

(iv) Inversions: for any v ∈ Λ⊗R of norm Q(v) = 1, define Jv =

(
0 0 −1

0 I−vvTS 0
−1 0 0

)
which maps z to z−〈v,z〉v

Q(z)

with cocycle of automorphy j(Jv; z) = Q(z).

Proof. It is straightforward to check that the matrices above are orthogonal with respect to S1 and act on
HΛ as described. G is connected so we can generate it by exponentiating matrices which span its Lie algebra
g. We decompose

g =
(

0 0 0
0 so(Λ) 0
0 0 0

)
⊕
{(

0 −bTS 0
0 0 b
0 0 0

)
: b ∈ Λ⊗ R

}
⊕ R ·

(
1 0 0
0 0 0
0 0 −1

)
⊕
{( 0 0 0

b 0 0
0 −bTS 0

)
: b ∈ Λ⊗ R

}
.

The first summand exponentiates to rotations; the second to translations; the third to scalings; and the
fourth to matrices of the form

T ∗b =

(
1 0 0
b I 0

−Q(b) −bTS 1

)
which one obtains through the identity T ∗−Rvb = JvTbJv where Rv = I − vvTS is the reflection through any
vector v ∈ Λ⊗ R with Q(v) = 1. �

Example 2.2. It is often helpful to consider the simplest example: a lattice Λ generated by a single vector
v of norm 1, i.e. with Gram matrix S = (2). In this case SO+(Λ1 ⊗ R) is isomorphic to PSL2(R) via the
latter’s adjoint representation on its Lie algebra. The upper half-space HΛ is identified with the usual upper
half-plane H = {z = x+ iy : y > 0} in an obvious way. Through this identification the standard generators
T = ( 1 1

0 1 ) and S =
(

0 −1
1 0

)
of PSL2(Z) correspond to the translation Tv and the inversion Jv, respectively.

2.2. Modular forms. For a general signature (2, `) lattice Λ1, we take the tautological bundle π : E → D+

where E = {z ∈ Λ1 ⊗ C : span(z) ∈ D+} and define automorphic forms to be meromorphic functions
F : E → C which are homogeneous (i.e. F (tz) = t−kF (z) for some k ∈ Z, called the weight of F ) and which
are invariant under the modular group: F (Mz) = F (z) for all M in the discriminant kernel of Λ1.

In the case Λ1 = Λ⊕ II1,1 it is enough to define automorphic forms as functions on the open dense subset
HΛ ⊆ D+. On functions F : HΛ → C we define the slash operator

F
∣∣∣
k
M(z) = j(M ; z)−kF (M · z), M ∈ G, k ∈ Z.

Then the definition of an automorphic form of weight k reduces to a meromorphic function F satisfying the
functional equations F |kM = F for all M ∈ ΓΛ. We call F a modular form if it is holomorphic on HΛ and has
bounded growth at cusps in the sense that the limit limt→∞(F |kM)(itv) is bounded for all M ∈ SO+(Λ1⊗Q)
and all positive vectors v ∈ P . Note that the growth conditions are automatically satisfied if ` ≥ 3, or if
` = 2 and Λ is anisotropic (Koecher’s principle). Moreover F is a cusp form if those limits are zero.

Orthogonal modular forms are invariant under translations by Λ and therefore have Fourier expansions:

F (z) =
∑
λ∈Λ′

c(λ)qλ, qλ = e2πi〈λ,z〉, c(λ) ∈ C.

The growth condition implies that c(λ) = 0 unless λ ∈ P (the closure of the positive cone). Cusp forms have
their Fourier coefficients supported on the positive cone itself.
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2.3. The Laplacian. With respect to the Gram matrix S which was fixed above, write S−1 = (sij)ni,j=1

and define the Laplace operator on HΛ by

∆ =
1

2

∑
i,j

sij
∂2

∂zi∂zj
.

(This is an abuse of nomenclature as S is not positive-definite.) Additionally define the Euler operator by

E = zT∇ =
∑
i

zi
∂

∂zi
.

In the lemma below we collect some basic properties.

Lemma 2.3. (i) ∆qλ = (2πi)2Q(λ)qλ for any λ ∈ Λ′.
(ii) ∆Q(z)−k = k(1 + k − `/2)Q(z)−k−1 for any k ∈ R.
(iii) E∆ = ∆(E − 2).

Proof. (i) This is because ∆qλ = (1/2)∇ · 2πie2πiλTSz = (2πi)2Q(λ)e2πiλTSz.
(ii) This is because

∆Q(z)−k =
1

2
∇ · (−kQ(z)−k−1z) =

−k`
2
Q(z)−k−1 +

k(k + 1)

2
Q(z)−k−2zTSz = k(1 + k − `/2)Q(z)−k−1.

(iii) This is because

∆E =
1

2

∑
i,j,k

sij
∂2

∂zi∂zj

(
zk

∂

∂zk

)
=

1

2

∑
i,j,k

sij
(
δjk

∂2

∂zi∂zk
+ δik

∂2

∂zj∂zk
+ zk

∂3

∂zi∂zj∂zk

)
= 2∆ + E∆. �

Part (iii) is generalized by the fact that the map X = ( 0 1
0 0 ) 7→ [multiplication by −Q(z)], Y = ( 0 0

1 0 ) 7→ ∆
and H =

(
1 0
0 −1

)
7→ E + `/2 determines a representation of sl2(Z), but we will not use this.

The following lemma says that applying ∆ to a modular form n times “almost” raises its weight by 2n.

Lemma 2.4. Let F : HΛ → C be a holomorphic function and k, n ∈ N. Then:
(i) ∆n(F |kTb) = (∆nF )|k+2nTb;
(ii) ∆n(F |kRA) = (∆nF )|k+2nRA;
(iii) ∆n(F |kSt) = (∆nF )|k+2nSt;
(iv)

∆n(F |kJv) =

n∑
j=0

Γ(n+ k + 1− `/2)

Γ(j + k + 1− `/2)

(
n

j

)(
∆j(E + k)(n−j)F

)∣∣∣
k+n+j

Jv,

where (E + k)(n−j) denotes the rising factorial

(E + k)(n−j) = (E + k)(E + k + 1)...(E + k + n− j − 1)

as a composition of operators.

Here Γ(n+k+1−`/2)
Γ(j+k+1−`/2) = (j + k + 1− `/2)...(n+ k − `/2) is well-defined even if n+ k + 1− `/2 ∈ −N0.

Remark 2.5. (i) The terms Γ(n+k+1−`/2)
Γ(j+k+1−`/2)

(
n
j

)
appear in many contexts involving differentiation and Möbius

transformations; compare the proof of Proposition 19 in [19].

(ii) The terms Γ(n+k+1−`/2)
Γ(j+k+1−`/2)

(
n
j

)
(E + k)F

∣∣∣
k+1

Jv corresponding to indices j < n in ∆(F |kJv) may be thought

of as obstructions to modularity of ∆nF , if F was a moduar form of weight k. These obstructions vanish
precisely in weight k = `/2 − n. In this weight all modular forms F are singular, that is, their Fourier
expansions are supported on norm-zero vectors, or equivalently ∆nF = 0. If one takes F to be a meromorphic
modular form of this weight then the modularity of ∆nF is a form of Bol’s identity.

Proof. Parts (i) through (iii) are easy because ∆ preserves translations, scalings and the orthogonal group
of S. To prove (iv) we simply use the chain rule and induction on n. When n = 1 this reduces to proving

∆(F |kJv) = (1 + k − `/2)
(

(E + k)F
)∣∣∣
k+1

Jv + (∆F )
∣∣∣
k+2

Jv.
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We first take z to have imaginary part in the negative cone (so F (z/Q(z)) is well-defined) and compute

∇
[
z 7→ F (z/Q(z))

]
= Q(z)−1(I −Q(z)−1SzzT )(∇F )(z/Q(z))

and

∆
[
z 7→ F (z/Q(z))

]
=

1

2
∇ ·Q(z)−1(S−1 −Q(z)−1zzT )(∇F )(z/Q(z))

= (1− `/2)Q(z)−2zT (∇F )(z/Q(z)) +Q(z)−2(∆F )(z/Q(z)).

Using the product rule for ∆ we obtain

∆
[
z 7→ Q(z)−1F (z/Q(z))

]
= ∆

[
Q(z)−k

]
F (z/Q(z)) +Q(z)−k∆

[
z 7→ F (z/Q(z))

]
+ 〈S−1∇Q(z)−k,S−1∇[z 7→ F (z/Q(z))]〉

= k(1 + k − `/2)Q(z)−k−1 + (1− `/2)Q(z)−k−2zT (∇F )(z/Q(z))

+Q(z)−k−2(∆F )(z/Q(z))− kQ(z)−k−2zT (I − SzzT /Q(z))(∇F )(z/Q(z))

= k(1 + k − `/2)Q(z)−k−1 + (1 + k − `/2)(EF )(z/Q(z)) +Q(z)−k−2(∆F )(z/Q(z)).

Now replace z by its reflection z − 〈v, z〉v (which is an orthogonal reflection with respect to S and therefore
leaves ∆ invariant) to obtain, for z ∈ HΛ,

∆(F |kJv) = k(1 + k − `/2)F |k+1Jv + (1 + k − `/2)(EF )|k+1Jv + (∆F )|k+2Jv.

In general, suppose we have found an identity of the form

∆n(F |kJv) =

n∑
j=0

c(n, j, k)
(

∆j(E + k)(n−j)F
)∣∣∣
k+n+j

Jv

for some constants c(n, j, k). Using the paragraph above and the relation E∆ = ∆(E − 2) we find

∆n+1(F |kJv) =

n∑
j=0

c(n, j, k)(1 + k + n+ j − `/2)
(

(E + k + n+ j)∆j(E + k)(n−j)F
)∣∣∣
k+n+1+j

Jv

+

n∑
j=0

c(n, j, k)
(

∆j+1(E + k)(n−j)F
)∣∣∣
k+n+2+j

Jv

=

n+1∑
j=0

(
(1 + k + n+ j − `/2)c(n, j, k) + c(n, j − 1, k)

)(
∆j(E + k)(n+1−j)F

)∣∣∣
k+n+1+j

Jv,

so we find an identity of this form for ∆n+1(F |kJv) with coefficients determined by the recurrence

c(n+ 1, j, k) = (1 + k + n+ j − `/2)c(n, j, k) + c(n, j − 1, k), c(0, j, k) =

{
1 : j = 0;

0 : otherwise.

This recurrence is solved by Γ(n+1+k−`/2)
Γ(j+1+k−`/2)

(
n
j

)
as one can verify (or reduce to the case 1 + k − `/2 = 0 and

observe that the recurrence defines the unsigned Lah numbers which have closed form n!
j!

(
n−1
j−1

)
), so we obtain

the claim. �

Example 2.6. In the case of elliptic modular forms of level 1, we take ` = 1 and ∆ = 1
4
d2

dτ2 and E = τ d
dτ

and this formula takes the form

d2n

dτ2n

(
τ−2kf(−1/τ)

)
=

n∑
j=0

2n−jτ−2k−2n−2j(2n+ 2k − 1)!!n!

(2j + 2k − 1)!!j!(n− j)!

( d2j

dτ2j

(
τ
d

dτ
+k
)
...
(
τ
d

dτ
+k+n−j−1

)
f
)

(−1/τ).

Here (2n− 1)!! = (2n− 1)(2n− 3)...1 and (−1)!! = 1.
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3. Pullbacks to Heegner divisors

Let (Λ, Q) be an even lattice of signature (1, ` − 1) and let λ ∈ Λ be a lattice vector of negative norm
Q(λ) = −m. Let L be the orthogonal complement λ⊥ in Λ. Then L ⊕ Zλ ⊆ Λ is a sublattice of full rank
and we write HΛ = HL⊕Zλ in coordinates

HΛ = {z + wλ : z = x+ iy ∈ HL, w = u+ iv ∈ C, v2 < QL(y)/m}.

To any M ∈ SO+((L⊕ II1,1)⊗R) let M̃ ∈ SO+((Λ⊕ II1,1)⊗R) be the orthogonal matrix which restricts

to M on L ⊕ II1,1 and which leaves λ fixed. If M comes from the modular group ΓL then M̃ acts trivially

on the discriminant group (L⊕Zλ)′/(L⊕Zλ). Since Λ,Λ′ ⊆ (L⊕Zλ)′ it follows that M̃ maps Λ into itself

and acts trivially on Λ′/Λ, i.e. M̃ ∈ ΓΛ. In this way the embedding

HL −→ HΛ, z 7→ z + 0 · λ

identifies XL = ΓL\HL with an analytic divisor on XΛ = ΓΛ\HΛ. Linear combinations of divisors that arise
in this way are called Heegner divisors.

Example 3.1. Let Λ = II1,1 be a hyperbolic plane. One can identify Λ ⊕ II1,1 with the lattice of integral
(2× 2) matrices with quadratic form given by the determinant. The group ΓΛ is generated by the transpose
and by SL2(Z)×SL2(Z)/{±(I, I)} where (M,N) ∈ SL2(Z)×SL2(Z) acts by left-multiplication by MT and by
right-multiplication by N , and XΛ is the product of modular curves X(1)×X(1) modulo (τ1, τ2) ∼ (τ2, τ1).
If p is a prime and λ = (−p, 1) then L = Z(1, p) is a one-dimensional lattice generated by a vector of norm
p; and XL is the curve X0(p) modulo the Fricke involution τ 7→ −1/pτ ; and the embedding XL → XΛ above
is essentially the pth Hecke correspondence.

Interpret HΛ as a subset of HL×C with z+wλ corresponding to the pair (z, w). We will define pullback
operators from modular forms on HΛ to modular forms on HL by evaluating certain Gegenbauer polynomials
in the partial derivative ∂w and the Laplace operator ∆L on HL along the divisor w = 0.

The main point is to understand how the partial derivative ∂w behaves with respect to inversions of HL.

Let Ez denote the Euler operator in the variable z, i.e. Ez =
∑`−1
i=1 zi∂zi and let (Ez + k)(n) denote the rising

factorials as before.

Lemma 3.2. Let F : HΛ → C be a holomorphic function and let v ∈ L⊗R with Q(v) = 1. For any n ∈ N0,

∂nw

∣∣∣
w=0

(
F
∣∣∣
k
Jv

)
=

bn/2c∑
i=0

n!

i!(n− 2i)!
mi
(

(Ez + k + n− 2i)(i)∂n−2i
w

∣∣∣
w=0

F
)∣∣∣
k+n−i

Jv.

For example, when n = 0, 1, 2 this reduces to

(F |kJv)
∣∣∣
w=0

=
(
F
∣∣∣
w=0

)∣∣∣
k
Jv; ∂w

∣∣∣
w=0

(
F
∣∣∣
k
Jv

)
=
(
∂w

∣∣∣
w=0

F
)∣∣∣
k+1

Jv;

∂2
w

∣∣∣
w=0

(
F
∣∣∣
k
Jv

)
= 2m

(
(Ez + k)F

)∣∣∣
k+1

Jv +
(
∂2
w

∣∣∣
w=0

F
)∣∣∣
k+2

Jv.

In fact, evaluating a modular form for Λ of weight k at w = 0 yields a modular form for L of weight k; and
evaluating its partial derivative ∂wF at w = 0 yields a modular form for L of weight k + 1.

In the proof we use some standard notation for multivariate power series. If z = (z1, ..., zn) ∈ Cn and
α = (α1, ..., αn) ∈ (N0)n then define

α! = α1! · ... · αn!; |α| = α1 + ...+ αn; zα = zα1
1 · ... · zαnn .

Proof. Both sides of the claim are formally invariant under translation by arbitrary vectors in Λ⊗C so it is
enough to prove this for functions which are analytic in a neighborhood of (z, w) = (0, 0) in Λ⊗C. Expand
F as a Taylor series:

F (z, w) =
∑

α∈N`−1

∞∑
j=0

c(α, j)

α!j!
zαwj .
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Let Rvz = z − 〈v, z〉v denote the reflection along v. Using the binomial theorem for w and ‖z‖ sufficiently
small we find

F
∣∣∣
k
Jv =

∑
α

∞∑
j=0

c(α, j)

α!j!
(Rvz)

αwj(Q(z)−mw2)−|α|−j−k

=
∑
α

∞∑
i,j=0

(
|α|+ j + k + i− 1

i

)
miQ(z)−|α|−j−k−i

c(α, j)

α!j!
(Rvz)

αwj+2i.

We apply ∂nw and set w = 0 to find

∂nw

∣∣∣
w=0

(F |kJv) =

bn/2c∑
i=0

n!

(n− 2i)!
mi
∑
α

(
|α|+ n+ k − i− 1

i

)
c(α, n− 2i)

α!
Q(z)−n−k+i(Jv · z)α.

The claim follows by observing that Ez acts on power series by Ezzα = |α|zα, and therefore

1

i!
(Ez + k + n− 2i)(i)zα =

(
|α|+ n+ k − i− 1

i

)
zα. �

Corollary 3.3. Let F : HΛ → C be holomorphic and let v ∈ L with Q(v) = 1. For n1, n2 ∈ N0,

∆n1

L ∂
n2
w

∣∣∣
w=0

(
F
∣∣∣
k
Jv

)
=

bn2/2c∑
i=0

n1∑
j=0

min1!n2!Γ(k + n1 + n2 + 3−`
2 − i)

i!j!(n1 − j)!(n2 − 2i)!Γ(j + k + n2 + 3−`
2 − i)

×
(

∆j
L(E + k + n2 − 2i)(n1+i−j)∂n2−2i

w

∣∣∣
w=0

F
)∣∣∣
k+n1+n2+j−i

Jv.

Proof. Combine Lemma 2.4 and Lemma 3.2. �

Definition 3.4. For s ∈ C and N ∈ N0, define the homogeneized Gegenbauer polynomial gsN (x, y) in the
variables x, y by

gsN (x, y) =
∑

n1,n2∈N0
2n1+n2=N

(−1)n1
Γ(s+ n1 + n2)

Γ(s)n1!n2!
xn2yn1 ,

with generating function
∞∑
N=0

gsN (x, y)tN = (1− xt+ yt2)−s.

We will generally use the rescaling

GsN (x, y) :=
N !Γ(s)

Γ(s+ dN/2e)
gsN (x, y),

which has better integrality properties (and is compatible with the Gegenbauer polynomials as used by
Eichler and Zagier [9]): namely GsN (x, y) ∈ Z[x, y, s].

Theorem 3.5. For holomorphic F : HΛ → C define the N th pullback to HL by

PLN ;kF (z;λ) = (2πi)−NG
k+(1−`)/2
N (∂w,m∆L)

∣∣∣
w=0

F (z).

For any v ∈ L⊗ R with Q(v) = 1,

PLN

(
F
∣∣∣
k
Jv

)
=
(
PLNF

)∣∣∣
k+N

Jv.

Here we are interpreting Jv as an inversion of either HL or HΛ as the context requires. The notation
emphasizes the dependence on the vector λ ∈ L⊥ which was chosen at the beginning of the section. We will
usually suppress the weight k if it is clear from the context.
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Proof. Using Corollary 3.3 we compute, up to the constant multiple C := (2πi)−N N !
Γ(k+(1−`)/2+dN/2e) ,

PLN (F |kJv)(τ ;λ)

= C
∑

2n1+n2=N

n1∑
j=0

bn2/2c∑
i=0

(−1)n1mi+n1Γ(N − n1 + k + 1−`
2 )Γ(k + n1 + n2 + 3−`

2 − i)
i!j!(n1 − j)!(n2 − 2i)!Γ(j + k + n2 + 3−`

2 − i)

×
(

∆j
L(E + k + n2 − 2i)(n1+i−j)∂n2−2i

w

∣∣∣
w=0

F
)∣∣∣
k+n1+n2+j−i

Jv

= C

bN/2c∑
u=0

(−m)uΓ(k +N − u+ 3−`
2 )

(N − 2u)!

u∑
j=0

1

j!(u− j)!

u−j∑
i=0

(−1)i
(
u− j
i

)
Γ(N + k + 1−`

2 − u+ i)

Γ(N + k + 3−`
2 − u+ i− (u− j))

×
(

∆j
L(E + k +N − 2u)(u−j)∂N−2u

w

∣∣∣
w=0

F
)∣∣∣
k+N+j−u

Jv,

where we have labelled u := n1 + i. The inner sum over i simplifies as follows. For any n > 0 and s ∈ C\{0},
use the binomial theorem to see that

n∑
i=0

(−1)i
(
n

i

)
Γ(i+ s)

Γ(i+ s+ 1− n)
=

dn−1

dtn−1

∣∣∣
t=1

ts−1(1− t)n = 0.

Of course when n = 0 we obtain
∑n
i=0(−1)i

(
n
i

) Γ(i+s)
Γ(i+s+1−n) = 1/s. Setting n = u−j and s = N+k+ 1−`

2 −u,

we find

PLN (F |kJv) = C

bN/2c∑
u=0

(−m)uΓ(N + k − u+ 3−`
2 )

(N + k − u+ 1−`
2 )u!(N − 2u)!

(
∆u
L∂

n2−2u
w

∣∣∣
w=0

F
)∣∣∣
k+N

Jv

= (PLNF )(τ ;λ)
∣∣∣
k+N

Jv. �

Corollary 3.6. Let F : HΛ → C be an orthogonal modular form of weight k. Then PLNF is an orthogonal
modular form of weight k +N on HL and it is a cusp form if N ≥ 1. If F has Fourier expansion

F (z + wλ) =
∑
r∈L′

∑
µ∈(2m)−1Z

c(r, µ)qrsµ, qr = e2πi〈r,z〉, s = e2πi(2m)w

then PNF has Fourier expansion

PLNF (z;λ) =
∑
r∈L′

( ∑
µ∈(2m)−1Z

c(r, µ)G
k+(1−`)/2
N (2mµ,mQ(r))

)
qr.

Moreover, PLNF (z;λ) is homogeneous of degree N in λ, i.e. for any a ∈ Z,

PLNF (z; aλ) = aN · PLNF (z;λ).

Proof. Both ∆L and ∂nw|w=0 are invariant under translations, rotations and scalings of HL, so we find

PLN (F |kM̃)(τ ;λ) = (PLNF (τ ;λ))
∣∣∣
k+N

M

for all holomorphic F and all matrices M of these types. (M̃ is as defined in the beginning of this section.)
Together with the previous lemma this implies that

PLN (F |kM̃)(τ ;λ) = (PLNF (τ ;λ))|k+NM for all M ∈ SO+((L⊕ II1,1)⊗ R).

If F was a modular form of weight k then this implies that PLNF (τ ;λ) is modular and has weight k +N .
The assertion about Fourier expansions holds because ∆n1

L (qrsµ)|w=0 = (2πi)2n1Q(r)n1qr and because

∂n2
w (qrsµ)|w=0 = (2πi)n2(2mµ)n2qr. To see that PLNF (z;λ) is a cusp form for N ≥ 1, suppose r ∈ L′∩(P\P ).

Then Q(r) = 0, and the growth condition on F implies that c(r, µ) = 0 unless µ = 0. Since G
k+(1−`)/2
N (0, 0) =

0 for N ≥ 1 it follows that the coefficient of qr in PLNF (z;λ) is 0. A similar argument applies to all cusps of
XL. Finally if we replace λ by a · λ and write

F (z + waλ) =
∑
r∈L′

∑
µ∈(2m)−1Z

c(r, µ)qrsaµ =
∑
r∈L′

∑
µ∈(2ma2)−1Z

c(r, a2µ)qre2πi(2ma2µ)aw

8



then

PLNF (z; aλ) =
∑
r∈L′

∑
µ∈(2ma2)−1Z

c(r, a2µ)G
k+(1−`)/2
N (2ma3µ,ma2Q(r))qr

=
∑
r∈L′

∑
µ∈(2m)−1Z

c(r, µ)G
k+(1−`)/2
N (2maµ,ma2Q(r))qr,

which equals aNPLNF (z;λ) because of the homogeneity GsN (ax, a2y) = aNGsN (x, y). �

Remark 3.7. Since PLNF (z;λ) is homogeneous in λ, it is natural to extend it to λ ∈ L⊥ ⊗ C by defining

PLNF (z;λ) := a−NPLNF (z; aλ)

where a ∈ C× is such that aλ ∈ Λ is a lattice vector.

Remark 3.8. It must be emphasized that PLN (F |kA) cannot be expressed in terms of PLN (F ) for all matrices

A ∈ ΓΛ; only those of the form A = M̃ with M ∈ ΓL. In particular the higher pullbacks of Eisenstein series

Ek(z) =
∑

A∈ΓΛ,∞\ΓΛ

1
∣∣∣
k
A,

where ΓΛ,∞ is the subgroup fixing some 0-dimensional cusp, are generally nonzero, while trivially PLN (1) = 0
for all N ≥ 1. These pullbacks can be computed using Section 5 below because Ek(z) is a theta lift.

Remark 3.9. Suppose F : HΛ → C is an orthogonal modular form of weight k which vanishes to order N
on HL, and λ ∈ L⊥ is primitive. The quasi-pullback of F to HL is (up to ±1) the limit

QF (z) = lim
w→0

(1− e2πiw)−NF (z + wλ) = lim
w→0

(2πiw)−NF (z + wλ)

and is a modular form of weight k + N and a cusp form if N > 0. This is, up to a constant multiple, a
special case of the N -th pullback: since ∂jw|w=0F = 0 for all j < N and ∂nw|w=0F (z) = N ! ·QF (z), we find

PLNF (z;λ) = (2πi)−N
N !

Γ(k + 1−`
2 + bN/2c)

∑
2n1+n2=N

(−m)n1
Γ(k + 1−`

2 + n1 + n2)

n1!n2!
∆n1

L

(
∂n2
w

∣∣∣
w=0

F (z)
)

=
N !Γ(k + 1−`

2 +N)

Γ(k + 1−`
2 + bN/2c)

·QF (z).

More generally, PLN ;kF (z;λ) equals PLN−j;k+j(w
−jF (z+wλ)) up to a constant multiple for every 0 ≤ j ≤ N .

Remark 3.10. It is possible to modify the Taylor coefficients of meromorphic modular forms F to obtain
pullbacks using the arguments of this section. Here the poles of F are irrelevant unless they occur on the
divisor w = 0. Therefore assume F has weight k and a pole of order ` along w = 0 and write out its Taylor
expansion in the form

F (z + λw) =

∞∑
j=−`

φj(z;λ)wj .

For any v ∈ L⊗ R of norm 1, since (w`F )|k−`Jv = w`(F |kJv) = w`F , Theorem 3.5 gives us the equation

PLN ;k−`

(
w`F

)
= PLN ;k−`

(
(w`F )

∣∣∣
k−`

Jv

)
=
(
PLN ;k−`(w

`F )
)∣∣∣
k+N−`

Jv;

and as before, the behavior of PLN ;k−`(w
`F ) under rotations, translations and scalings of HL is easy to see.

In particular, the N -th pullback of

w`F =

∞∑
j=0

φj−`(z;λ)wj ,

treated as if it were a modular form of weight k−`, is a true (meromorphic) modular form of weight k−`+N .
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4. Pullbacks to special cycles

In this section we define pullback operators to special cycles of arbitrary codimension. Let (Λ, Q) be an
even lattice of signature (1, `−1) and let L ⊆ Λ be a Lorentzian sublattice of arbitrary rank with orthogonal
complement L⊥ in Λ. As before the orthogonal upper half-space can be written in coordinates as

HΛ = {z + w : z ∈ HL, w ∈ L⊥ ⊗ C, Q(im(w)) < Q(im(z))},

and XL embeds as an analytic cycle on XΛ cut out locally by the equations w = 0. (Here we are not
necessarily assuming that L has strictly lower rank than Λ; although if rankL = rank Λ then everything
below is vacuous.)

Any modular form F : HΛ → C can be expanded as a Fourier series in the form

F (z, w) =
∑
r∈L′

∑
µ∈(L⊥)′

c(r, µ)qrsµ, qr = e2πi〈r,z〉, sµ = e2πi〈µ,w〉,

where c(r, µ) = 0 if (r, µ) /∈ Λ′.
We will work in the dual tensor algebra T ∗L⊥ =

⊕∞
n=0((L⊥)∗)⊗n. Given a linear form r : L⊥ → Z

and a bilinear form m : L⊥ × L⊥ → Z we define multilinear N -forms GsN (r,m) ∈ ((L⊥)∗)⊗N by analogy
to the usual Gegenbauer polynomials. Namely we define gsN (r,m) by symmetrizing the coefficient of tN in
(1− rt+mt2)−s ∈ (T ∗L⊥)[|t|], and we define

GsN (r,m) :=
N !Γ(s)

Γ(s+ dN/2e)
gsN (r,m).

For example

Gs0(r,m) = 1, Gs1(r,m) = r, Gs2(r,m) = (s+ 1)r ⊗ r − 2Sym(m).

Here the symmetrization of an N -form ω is Sym(ω)(v1, ..., vn) = 1
N !

∑
σ∈Sn ω(vσ(1), ..., vσ(n)).

Theorem 4.1. Let F : HΛ → C be an orthogonal modular form of weight k with Fourier series

F (z, w) =
∑
λ∈L′

∑
µ∈(L⊥)′

c(λ, µ)qλsµ, qλ = e2πi〈λ,z〉, sµ = e2πi〈µ,w〉.

Let B denote the bilinear form B(x, y) = Q(x+ y)−Q(x)−Q(y) restricted to L⊥ and interpret dual lattice
vectors µ ∈ (L⊥)′ as the linear forms v 7→ 〈v, µ〉. For N ∈ N0,

PLNF (z) =
∑
λ∈L′

( ∑
µ∈(L⊥)′

c(λ, µ)G
k−dimL/2
N (µ,−Q(λ)B/2)

)
qλ

is a T ∗L⊥-valued orthogonal modular form of weight k +N on HL.

More explicitly, for any vectors v1, ..., vN ∈ L⊥ ⊗ C we obtain an orthogonal modular form

PLNF (z; v1, ..., vN ) =
∑
λ∈L′

( ∑
µ∈(L⊥)′

c(λ, µ)G
k−dimL/2
N (µ,−Q(λ)B/2)(v1, ..., vN )

)
qλ.

Proof. Fix any vector v ∈ L⊥. By restricting F to the symmetric space associated to the lattice L ⊕ 〈v〉
(interpreted as a subset of HL × C) we obtain the modular form

Fv : HL⊕〈v〉 → C, Fv(z, w) := F (z + wv) =
∑
λ∈L′

∑
µ∈(L⊥)′

c(λ, µ)qλsµ(v), s = e2πiw,

whose higher pullbacks PLN (Fv) are modular forms of weight k+N on HL. The Fourier expansion of PLN (Fv)
is

PN (Fv)(z) =
∑
λ∈L′

( ∑
µ∈(L⊥)′

c(λ, µ)G
k−dimL/2
N (µ(v),−Q(λ)Q(v))

)
qλ,

i.e. PN (Fv)(z) = PLNF (z; v, ..., v). In particular PLNF is a symmetric multilinear form whose diagonal values
PLNF (z; v, ..., v) are modular forms, and cusp forms if N ≥ 1. Every value PLNF (z; v1, ..., vn) is obtained as
a linear combination of the diagonal values through the polarization identity. �
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5. Partial development coefficients of Jacobi forms and higher pullbacks of theta lifts

One important construction of orthogonal modular forms is the theta lift from vector-valued modular
forms (of half-integral weight) for Mp2(Z). It turns out that the (higher) pullbacks of theta lifts are them-
selves theta lifts. In the special case that our Lorentzian lattice Λ splits in the form L(−1)⊕ II1,1, one can
identify the vector-valued modular forms in question with Jacobi forms of lattice index L, and the pullbacks
of the theta lift of a Jacobi form is essentially the theta lift of its development coefficients (in an appropriate
sense). In this section we explain how the development coefficients are defined for Jacobi forms of lattice
index and we explain how to generalize this to vector-valued modular forms attached to lattices of arbitrary
signature. Finally we prove that the development coefficients and higher pullbacks fit into a commutative
diagram involving the theta lift.

5.1. 5.1. Jacobi forms. Let (L,Q) be a positive-definite even lattice and let ρ : Mp2(Z) → GLV be a
finite-dimensional representation. A Jacobi form of weight k and index L and multiplier ρ is a holomorphic
function φ : H× (L⊗C)→ V satisfying a vanishing condition on Fourier coefficients (explained below) and
the following functional equations.
(i) For all (

(
a b
c d

)
, φ) ∈ Mp2(Z),

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= φ(τ)2ke2πi c

cτ+dQ(z)ρ(
(
a b
c d

)
, φ)φ(τ, z).

(ii) For all λ, µ ∈ L,

φ(τ, z + λτ) = e−2πi(τQ(λ)+〈λ,z〉)φ(τ, z) and φ(τ, z + µ) = φ(τ, z).

Every Jacobi form φ has a Fourier expansion which takes the form

φ(τ, z) =
∑
n∈Q

∑
r∈L′

c(n, r)qnζr, q = e2πiτ , ζr = e2πi〈r,z〉, c(n, r) ∈ V.

The vanishing condition referred to above is that c(n, r) = 0 whenever Q(r) > n.

Remark 5.1. The more familiar (scalar-valued) Jacobi forms of weight k and index m ∈ N as in [9] are
the special case of Jacobi forms indexed by a rank-one lattice: L = Z and Q(v) = mv2 with bilinear form
〈v, w〉 = 2mvw. Also, modular forms are Jacobi forms for the rank-zero lattice L = {0}.

Given a Jacobi form φ of weight k, the development coefficients D0φ,D1φ are a modification of the Taylor
coefficients of φ about z = 0 which yield vector-valued modular forms of weight k, k + 1, ... taking values in
V ⊗T ∗L, where T ∗L =

⊕∞
n=0(L∗⊗C)⊗n. In particular DNφ should be thought of as a symmetric multilinear

form which takes N input vectors in L and produces a modular form of weight k +N and multiplier ρ.

Lemma 5.2. Let B(x, y) = 〈x, y〉 = Q(x + y) − Q(x) − Q(y) be the bilinear form on L and identify dual
lattice vectors r with one-forms v 7→ 〈r, v〉. Let φ(τ, z) =

∑
n,r c(n, r)q

nζr be a Jacobi form of weight k and

index L and multiplier ρ. For any N ∈ N0 and α ∈ L⊗N ,

DNφ(τ ;α) =
∑
n∈Q

( ∑
r∈L′

c(n, r)Gk−1
N (r, nB/2)(α)

)
qn

is a modular form of weight k +N and multiplier ρ and it is a cusp form if N > 0.

Here Gk−1
N are the multilinear Gegenbauer polynomials as defined in the previous section. For example

the first few development coefficients of φ are

D0φ(τ) =
∑
n

( ∑
r∈L′

c(n, r)
)
qn;

D1φ(τ ; v) =
∑
n

( ∑
r∈L′
〈r, v〉c(n, r)

)
qn;

D2φ(τ ; v1 ⊗ v2) =
∑
n

( ∑
r∈L′

(k〈r, v1〉〈r, v2〉 − n〈v1, v2〉)c(n, r)
)
qn.
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Proof. As in the proof of Theorem 4.1, use the polarization identity to reduce to the case that α is a diagonal
pure tensor: α = v ⊗ ...⊗ v for some v ∈ L. The form

φv : H× C→ V, φv(τ, z) = φ(τ, zv)

is a Jacobi form of the same weight and multiplier and of scalar index Q(v), and DNφ(τ ;α) is, up to a scalar
multiple, the N th development coefficient of φv in the sense of Chapter 3 of [9]. �

5.2. Weil representations and partial development coefficients. Let (Λ, Q) be an even lattice with
discriminant group A = Λ′/Λ, and let σ be its signature. The Weil representation associated to Λ is the
representation ρΛ of Mp2(Z) on the group ring C[A] where the generators

S =
((

0 −1
1 0

)
,
√
τ
)
, T = (( 1 1

0 1 ) , 1)

act on the natural basis eγ , γ ∈ A by

ρΛ(T )eγ = e2πiQ(γ)eγ , ρΛ(S)eγ =
1√
|Λ′/Λ|

e2πi(σ/8)
∑

β∈Λ′/Λ

e−2πi〈γ,β〉eβ .

The most familiar setting where this representation appears is the multiplier of the theta function. If Λ
is positive-definite then

ΘΛ(τ, z) =
∑
λ∈Λ′

qQ(λ)ζλeλ+Λ

is a Jacobi form of weight (dim Λ)/2, lattice index Λ, and multiplier ρΛ.

Suppose L ⊆ Λ is a sublattice and define Λ̃ := L⊥ ⊕ L ⊆ Λ with discriminant group B. Then the Weil
representations attached to L and Λ̃ (or A and B) are related by the intertwining operators

↓AB : C[A] −→ C[B], eγ 7→
∑

δ∈Λ̃′/Λ̃
δ+Λ=γ

eδ

and

↑AB : C[B] −→ C[A], eδ 7→

{
eδ+Λ : δ ∈ Λ′;

0 : otherwise;

in the sense that ρΛ̃(M) ↓AB=↓AB ρΛ(M) and ρΛ(M) ↑AB=↑AB ρΛ̃(M) for every M ∈ Mp2(Z), as one can check
on the generators M = S, T . On modular forms these induce the up-arrow and down-arrow maps as in
Lemma 5.5 and Lemma 5.6 of [2].

We define a C-linear “trace map” along the sublattice L ⊆ Λ by

TrL : C[L′/L]⊗ C[Λ′/Λ]⊗ C[Λ′/Λ] −→ C[L′/L], eβ ⊗ eγ ⊗ eδ 7→

{
eβ : γ = δ;

0 : otherwise.

This respects the Weil representations in the sense that

TrL

(
ρL(M)eβ ⊗ ρΛ(M)eγ ⊗ ρΛ(−1)(M)eδ

)
= ρL(M)TrL(eβ ⊗ eγ ⊗ eδ)

for all M ∈ Mp2(Z). In the special case that L = {0} we simply write

Tr : C[Λ′/Λ]⊗ C[Λ′/Λ] −→ C.

The trace map may be used to define the theta decomposition which is an isomorphism Θ between certain
spaces of vector-valued modular forms and Jacobi forms. Specifically, if Λ is a negative-definite even lattice
then we get isomorphisms

Θ : Mk(ρΛ)
∼→ Jk+dim Λ/2,Λ(−1), ΘF = Tr(F ⊗ΘΛ(−1)).

On Fourier expansions this acts formally by sending qneλ+Λ to qn−Q(λ)ζλ; in other words,

Θ
( ∑
γ∈Λ′/Λ

∑
n∈Z+Q(γ)

c(n, γ)qneγ

)
=
∑
λ∈Λ′

∑
n∈Z+Q(λ)

c(n, λ+ Λ)qn−Q(λ)ζλ.

12



These operators may be used to define the (partial) development coefficients of a modular form F ∈
Mk(ρΛ) along a negative-definite sublattice of Λ.

Definition 5.3. Let (Λ, Q) be an even lattice and let L ⊆ Λ be a sublattice with negative-definite orthogonal
complement L⊥. Let F ∈Mk(ρΛ). ForN ∈ N0 the development coefficients of F along L are the development
coefficients of a corresponding Jacobi form:

DL
NF (α) := DNTrL

(
(↓ΛL⊥⊕L F )⊗ΘL⊥(−1)

)
(α) ∈Mk+N+dimK/2(ρL), α ∈ (L⊥)⊗N .

Here TrL(↓ΛL⊥⊕L F ⊗ΘL⊥(−1)) is a Jacobi form of weight k + dimL⊥/2, index L⊥(−1) and multiplier ρL.

In particular, if F has Fourier expansion F (τ) =
∑
γ∈Λ′/Λ

∑
n∈Z+Q(γ) c(n, γ)qneγ , then its development

coefficients along L have Fourier expansions

DL
NF (τ ;α) =

∑
γ∈L′/L

∑
n∈Z+Q(γ)

( ∑
λ∈(L⊥)′

(γ,λ+L⊥)∈Λ′/Λ

c(n+Q(λ), (γ, λ)) ·Gk−1+dimL⊥/2
N (λ, nB/2)(α)

)
qneγ

for α ∈ (L⊥)⊗n.

Corollary 5.4. Let L be a positive-definite even lattice and let K ⊆ L be a sublattice with orthogonal
complement K⊥ in L. Let φ(τ, z) =

∑
n,r c(n, r)q

nζr be a Jacobi form of weight k, index L and multiplier

ρ. Let B denote the bilinear form on K⊥ induced by restricting Q. For every N ∈ N0 and α ∈ (K⊥)⊗N , the
partial development coefficient

DK
N (τ, z;α) :=

∑
n∈Q

∑
rK∈K′

( ∑
r
K⊥∈(K⊥)′

c(n, rK , rK⊥)G
k−1−(dimK)/2
N (rK⊥ ,

nB

2
)(α)

)
qnζrK , z ∈ K ⊗ C

is a Jacobi form of weight k +N , index K and multiplier ρ.

As usual c(n, rK , rK⊥) = c(n, r) if there is a linear form r : L → Z with r|K = rK and r|K⊥ = rK⊥ and
c(n, rK , rK⊥) = 0 otherwise.

Proof. If φ has theta decomposition F then DK
Nφ(τ, z;α) is the Jacobi form whose theta decomposition is

D
K(−1)
N F (τ ;α). �

5.3. Fourier-Jacobi expansions. Suppose Λ splits in the form L(−1) ⊕ II1,1 where L is positive-definite
and write the upper half-space in the form

HΛ =
{

(τ, z, w) : τ, z ∈ H, z ∈ L⊗ C, QL(im z) < (im τ) · (imw)
}
.

The partial Fourier expansion of an orthogonal modular form F for Λ with respect to w takes the form

F (τ, z, w) =

∞∑
n=0

φn(τ, z)sn, s = e2πiw.

Lemma 5.5. Suppose F is an orthogonal modular form of weight k. Each φn above is a Jacobi form of
weight k and lattice index L(n) (i.e. L with quadratic form n ·Q). The Fourier expansion above is called the
Fourier-Jacobi expansion of F .

Proof. (as in [10]). Fix the Gram matrix SΛ =
(

0 0 1
0 −SL 0
1 0 0

)
for Λ. If

(
a b
c d

)
∈ SL2(Z) then ΓΛ contains the

block matrix

(
a 0 0 b 0
0 a 0 0 b
0 0 I 0 0
c 0 0 d 0
0 c 0 0 d

)
which maps (τ, z, w) to (aτ+b

cτ+d ,
z

cτ+d , w −
c

cτ+dQ(z)) with factor of automorphy

(cτ + d). Therefore
∞∑
n=0

φn

(aτ + b

cτ + d
,

z

cτ + d

)
e2πin(w−cQ(z)/(cτ+d)) =

∞∑
n=0

(cτ + d)kφn(τ, z)e2πinw,

and comparing coefficients of e2πinw yields

φn

(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke2πi c

cτ+dnQ(z)φn(τ, z).

13



Also if λ, µ ∈ L then ΓΛ contains the block matrix

 1 0 µTSL 0 QL(µ)
0 1 0 0 0
0 λ I 0 µ

0 QL(λ) λTSL 1 〈λ,µ〉
0 0 0 0 1

 which maps

(τ, z, w) 7→ (τ, z + λτ + µ,w +Q(λ)τ + 〈λ, z + µ〉)
with factor of automorphy 1. Therefore

∞∑
n=0

φn(τ, z + λτ + µ)e2πin(w+Q(λ)τ+〈λ,z+µ〉) =

∞∑
n=0

φn(τ, z)e2πinw

and comparing coefficients of e2πinw yields

φn(τ, z + λτ + µ) = e−2πinQ(λ)τ−2πin〈λ,z+µ〉φn(τ, z).

Finally the growth condition of φn at cusps follows from that of F . �

Certain pullbacks have the simpler effect of applying partial development coefficients to the Fourier-Jacobi
expansion termwise:

Proposition 5.6. Suppose F is an orthogonal modular form of weight k with Fourier-Jacobi expansion

F (τ, z, w) =

∞∑
n=0

φn(τ, z)sn.

Let K ⊆ L be a sublattice. Then the pullbacks of F to K(−1)⊕ II1,1 have Fourier-Jacobi expansions

P
K(−1)⊕II1,1
N F (τ, z1, w;α) =

∞∑
n=0

DK
Nφn(τ, z1;α)sn, (τ, z1, w) ∈ HK(−1)⊕II1,1 .

Proof. It is enough to prove this when K has codimension 1, since when α = v ⊗ ... ⊗ v is a pure diagonal
we obtain both sides by first restricting from L to K ⊕ 〈v〉, and then pulling back or applying development
coefficients to K. Write out each term in the Fourier-Jacobi expansion as

φn(τ, z) =

∞∑
j=0

∑
r∈L′

c(j, r, n)qjζr, q = e2πiτ , ζr = e2πir(z).

Fix λ ∈ K⊥ of norm QL(λ) = m and decompose z = z1 + z2λ where z1 ∈ K ⊗ C. Write ζr1 = e2πir(z1) for
r ∈ K ′. Since k − 1− (dimK)/2 = k + (1− `)/2 where ` = dim Λ we find

P
K(−1)⊕II1,1
N F (τ, z1, w;λ) =

∞∑
n=0

[ ∞∑
j=0

∑
r∈K′

( ∑
µ∈(2m)−1Z

c(j, (r, µ), n)G
k+(1−`)/2
N (−2mµ,−mQL(r))

)
qj(ζ1)r

]
sn

=
∞∑
n=0

DK
Nφ(τ, z1)sn. �

5.4. Theta lifts. Suppose Λ is a Lorentzian lattice of signature (1, `− 1). If

F (τ) =
∑

γ∈Λ′/Λ

∑
n∈Z+Q(λ)

c(n, γ)qneγ

is a cusp form of weight k + 1− `/2 with k ≥ 2, then the theta lift

ΦF (z) =
∑

λ∈Λ′∩P

∞∑
n=1

c(Q(λ), λ)nk−1qnλ, z ∈ HΛ

is an orthogonal cusp form of weight k. (See [1], [2] for the approach to the theta lift using vector-valued
modular forms; for the approach which takes Jacobi forms as input we refer to Gritsenko, e.g. [10].)

Proposition 5.7. Suppose F ∈ Sk+1−`/2(ρΛ) is a cusp form of weight k+ 1− `/2 with k ≥ 2 and L ⊆ Λ is

a negative-definite sublattice. Then the N th pullback of the theta lift ΦF along L equals the theta lift of the
N th development coefficient of F along L:

PLNΦF = ΦDLNF .
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Proof. Let F have the Fourier expansion

F (τ) =
∑

γ∈Λ′/Λ

∑
n∈Z+Q(γ)

c(n, γ)qneγ .

Then DL
NF is a modular form of weight k + 1 − `/2 + N + dimL/2 = k + 1 + N − dimL⊥/2 with Fourier

expansion

DL
NF (τ ;α) =

∑
γ∈(L⊥)′/L⊥

∑
n∈Z+Q(γ)

( ∑
λ∈L′

(γ,λ)∈Λ′

c(n+Q(λ), (γ, λ))G
k−dimL⊥/2
N (λ, nB/2)(α)

)
qneγ

and its theta lift is

ΦDLNF (α) =
∑

µ∈(L⊥)′

∞∑
n=0

nk+N−1
∑
λ∈L′

(µ,λ)∈Λ′

c
(
Q(µ) +Q(λ), (µ, λ)

)
G
k−dimL⊥/2
N (λ,Q(µ)B/2)(α)qnλ

=
∑

µ∈(L⊥)′

∞∑
n=0

nk−1
∑
λ∈L′

(µ,λ)∈Λ′

c
(
Q(µ) +Q(λ), (µ, λ)

)
G
k−dimL⊥/2
N (nλ,Q(nµ)B/2)(α)qnλ,

i.e. the N th pullback of

ΦF =
∑
λ∈Λ′

∞∑
n=0

nk−1c(Q(λ), λ)qnλ

along L evaluated at α ∈ L⊗N . �

6. Special cases

In this section we work out the pullbacks explicitly in three cases. These serve as examples of how these
calculations are carried out in general and also may be of independent interest.

6.1. Hilbert modular forms. Let O be an order in a real-quadratic field K, which can be understood as
an even Lorentzian lattice with respect to the conjugate-trace form 〈x, y〉 = TrK/Q(xy′) and quadratic form

Q(x) = xx′ = NK/Q(x). Here and below, x′ denotes the conjugate of x ∈ K. Let O# be the dual lattice

and let dO = |O#/O| be the discriminant. (This simplifies for quadratic fields: if dK is the discriminant of
K then O must have the form

O = Z
[
f · dK +

√
dK

2

]
, where f := [OK : O],

and dO = f2dK , and O# = 1√
dO
O. See e.g. [6] 7.A.) Then O ⊕ II1,1 is isometric to the lattice of conjugate-

skew-symmetric matrices
(
a
√
dO −b
b′ c/

√
dO

)
with a, b, c ∈ O, which is acted upon by the Hilbert modular group

ΓO = PSL2(O# ⊕O) =
{(

a b
c d

)
∈ PSL2(K) : a, d ∈ O, b ∈ O#, c ∈ (O#)−1

}
by conjugation A ·M = A′MAT . (Here (O#)−1 is the inverse in the group of fractional ideals of K.)

Remark 6.1. The group PSL2(O) (which is also often called the Hilbert modular group) appears in the
orthogonal modular group attached to O with the negative norm-form Q(x) = −xx′. Jordan decomposition
shows that the discriminant forms (O#/O,±Q) are equivalent if and only if dK is not divisible by any prime
p ≡ 3 (4). (It is exactly in these cases that the associated surfaces PSL2(O)\(H × H) and ΓO\(H × H) are
isomorphic, as observed in [13].) If OK contains a unit ε of norm −1 (e.g. if K = Q(

√
p)) for a prime

p ≡ 1 (4)) then x 7→ εx preserves the order O and gives an isometry on the level of lattices. The group ΓO is
natural in the moduli interpretation through which points of ΓO\(H×H) correspond to principally polarized
abelian surfaces with special endomorphisms.
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One can interpret orthogonal modular forms for O as graded-symmetric Hilbert modular forms of the
same (parallel) weight in a way that respects Fourier expansions. One of the positive cones for O can be
identified with H×H by associating, to a modulus z ∈ HO ⊆ O ⊗Z C (which is most conveniently thought
of as the Z-linear map 〈−, z〉 : O# → C) the point (τ1, τ2) ∈ H×H which satisfies

ν′τ1 + ντ2 = 〈ν/
√
dO, z〉 for all ν ∈ O.

Proving that this is equivariant with respect to the action of ΓK on H×H and its orthogonal action on HO
reduces to showing that the map

φ : H×H −→ (O ⊕ II1,1)⊗ C, φ(τ1, τ2) = d
−1/2
O ( τ1τ2 τ2τ1 1 )

satisfies φ(A · (τ1, τ2)) = (γτ1 + δ)(γ′τ2 + δ′)A′φ(τ1, τ2)AT for every A =
(
α β
γ δ

)
∈ PSL2(O). In particular if

F (z) =
∑
ν∈O#

c(ν)qν , qν = e2πi〈ν,z〉, z ∈ HO ⊆ O ⊗Z C

is an orthogonal modular form then f(τ1, τ2) =
∑
ν∈O c(ν/

√
dK)e2πi(ν′τ1+ντ2) is a Hilbert modular form

satisfying f(τ2, τ1) = (−1)kf(τ1, τ2).

Suppose λ, µ ∈ O are nonzero vectors such that 〈λ, µ〉 = 0 and λ is totally positive. Then the rational
quadratic divisor on HO associated to the (negative-norm) vector µ corresponds to the Hirzebruch-Zagier

curve {(λτ, λ′τ) : τ ∈ H} ⊆ H × H which embeds X0(NK/Qλ) in ΓO\(H×H). The higher pullbacks from
Hilbert modular forms to elliptic modular forms of level Γ0(NK/Qλ) obtained in this way are essentially
Cohen’s operators [5]: for a Hilbert modular form f(τ1, τ2) of parallel weight (k, k), define

CλNf(τ) := (2πi)−N
N∑
r=0

(−1)r
(
k +N − 1

r

)(
k +N − 1

N − r

)
λr(λ′)n−r

( ∂N

∂τ r1∂τ
N−r
2

f
)

(λτ, λ′τ).

Proposition 6.2. Let F (z) =
∑
ν∈O# c(ν)qν be an orthogonal modular form of weight k for O with corre-

sponding Hilbert modular form f(τ1, τ2) =
∑
ν∈O c(ν/

√
dK)e2πi(ν′τ1+ντ2). Then its N th pullback to the curve

(λτ, λ′τ) is, up to a nonzero multiple (which depends on k and N and λ), the N th Cohen operator:

P
(λ,λ′)H
N F (τ ;µ) =

∑
ν∈O#

c(ν)G
k−1/2
N

(
− 〈ν, µ〉,− Q(µ)

4Q(λ)
〈ν, zλ〉2

)
q〈ν,λ/

√
dO〉

=
N !

(k + bN/2c)...(k +N − 1)
(µ/λ)NCλNf(τ).

Here we let zλ ∈ HO denote the point corresponding to (λτ, λ′τ) ∈ H×H.

Proof. To extract the first expression for PNF from the formula of section 3, consider that the coordinates

of ν ∈ O# with respect to the orthogonal splitting λ, µ of O ⊗ C are the projections 〈ν,λ〉
2Q(λ) ,

〈ν,µ〉
2Q(µ) and

that m = −Q(µ). The rest of the proof relies on the fact that Cohen’s coefficients
(
k+N−1

r

)(
k+N−1
N−r

)
,

after rescaling by the factor Γ(2k+N−1)
Γ(k+N) , have a simple generating function which is similar to that of the

Gegenbauer polynomials:

Lemma 6.3. As formal power series in x and y, for any k > 1/2,

∞∑
N=0

Γ(2k +N − 1)

Γ(k +N)

∑
r+s=N

(
k +N − 1

r

)(
k +N − 1

s

)
xrys =

Γ(2k − 1)

Γ(k)

(
1− 2(x+ y) + (x− y)2

)1/2−k
.

Proof. Once this identity has been conjectured (e.g. by comparing the pullbacks with Cohen’s operators),
it is straightforward to verify algebraically: for example, labelling

F (x, y, k) :=
∑
r,s≥0

(
k + r + s− 1

r

)(
k + r + s− 1

s

)
Γ(2k + r + s− 1)

Γ(k + r + s)
xrys,
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it is enough to verify that F satisfies the differential equation (in y)(
1− 2(x+ y) + (x− y)2

)
∂yF (x, y, k) = (1− 2k)(y − x− 1)F (x, y, k)

and has initial value at y = 0

F (x, 0, k) =

∞∑
r=0

(
k + r − 1

r

)
Γ(2k + r − 1)

Γ(k + r)
xr =

Γ(2k − 1)

Γ(k)

∞∑
r=0

(
2k + r − 1

r

)
xr =

Γ(2k − 1)

Γ(k)(1− x)2k−1

by the binomial theorem. We omit the details. �

Using λµ′ = −µλ′ and therefore Q(λ)〈ν, µ〉 = λµ′(νλ′−ν′λ) we obtain, for the non-normalized Gegenbauer
polynomials gN ,

g
k−1/2
N

(
− 〈ν, µ〉,− Q(µ)

4Q(λ)
〈ν, λ〉2

)
=
(
− λµ′

Q(λ)

)N
g
k−1/2
N (νλ′ − ν′λ, (νλ′ + ν′λ)2/4)

and after passing to generating functions and applying the lemma with x = −νλ′ and y = ν′λ,
∞∑
N=0

g
k−1/2
N

(
− 〈ν, µ〉,− Q(µ)

4Q(λ)
〈ν, λ〉2

)
tN

=
(

1 +
λµ′

Q(λ)
(νλ′ − ν′λ)t+

λ2µ′2

4Q(λ)2
(νλ′ + ν′λ)2t2

)1/2−k

=
(k − 1)!

(2k − 2)!

∞∑
N=0

( λµ′t

2Q(λ)

)N N∑
r=0

(−1)r
(
k +N − 1

r

)(
k +N − 1

N − r

)
Γ(2k +N − 1)

Γ(k +N)
(νλ′)r(ν′λ)N−r,

i.e.

G
k−1/2
N

(
− 〈ν, µ〉,− Q(µ)

4Q(λ)
〈ν, λ〉2

)
=

N !(k − 1)!(2k +N − 2)!Γ(k − 1/2)

(2k − 2)!(k +N − 1)!Γ(k − 1/2 + dN/2e)

( λµ′

2Q(λ)

)N N∑
r=0

(−1)r
(
k +N − 1

r

)(
k +N − 1

N − r

)
(νλ′)r(ν′λ)N−r.

Cohen’s operator has the effect on Fourier expansions of sending e2πi(ν′λτ1+νλ′τ2) to exactly this series∑N
r=0(−1)r

(
k+N−1

r

)(
k+N−1
N−r

)
(νλ′)r(ν′λ)N−r multiplied by e2πi〈ν/

√
dO,λ〉τ . Finally, using the simplification

N !(k − 1)!(2k +N − 2)!Γ(k − 1/2)

(2k − 2)!(k +N − 1)!Γ(k − 1/2 + dN/2e)
=

2NN !

(k + bN/2c)...(k +N − 1)

we obtain the claim. �

6.2. Siegel modular forms I. Let Λ be the Lorentzian lattice of symmetric (2× 2) integral matrices with
quadratic form given by the determinant and with bilinear form

〈A,B〉 = a11b22 + a22b11 − 2a12b12 = tr(ABadj), A = ( a11 a12
a12 a22

) , B =
(
b11 b12

b12 b22

)
∈ Λ.

Then Λ⊕ II1,1 is isometric to the lattice of integral antisymmetric (4× 4) matrices which are orthogonal to

J =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)
with respect to the Pfaffian form (a quadratic form which squares to the determinant)

and on which

PSp4(Z) = {M ∈ PSL4(Z) : MTJM = J}
acts by conjugation. This action by conjugation identifies PSp4(Z) with the orthogonal modular group ΓΛ.

A Siegel modular form (of degree two) of weight k ∈ N0 is a holomorphic function F : H2 → C satisfying
F (M ·z) = det(cz+d)kF (z) for all M =

(
a b
c d

)
∈ PSp4(Z), where M ·z = (az+b)(cz+d)−1. The holomorphy

extends to cusps by Koecher’s principle. Any Siegel modular form F can be written out as a Fourier series

F (z) =
∑
T

c(T )qT , c(T ) ∈ C, qT = e2πitr(Tz)
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where T runs through symmetric matrices with integral diagonal and half-integral off-diagonal entries; i.e.
the dual lattice Λ′. The correspondence between Siegel modular forms and orthogonal modular forms is such
that H2 is exactly the upper half-space HΛ and that if F (z) =

∑
T c(T )qT is a Siegel modular form then

F (z) =
∑
T∈Λ′

c(T )qT , qT = e2πi〈Tadj ,z〉 = e2πitr(Tz)

is an orthogonal modular form of the same weight.
For any order O in a real-quadratic number field K, Siegel modular forms can be pulled back to Hilbert

modular forms as in the previous subsection, i.e. for the group ΓK = PSL2(O# ⊕ O). (A good reference
for this is Section 5 of [17].) Here the distinction between the Hilbert modular groups is important: if K is
such that PSL2(O)\(H × H) and ΓK\(H × H) are not isomorphic, then there is no modular embedding of
PSL2(O)\(H×H) in PSp4(Z)\H2 at all (by [12]) and therefore no pullback.

Let ax2 +bx+c ∈ Z[x] be a polynomial with splitting field K. Fix a root µ/λ ∈ K where λ, µ are algebraic

integers and consider the order O := Z[λ, µ] ⊆ OK with discriminant dO. Define A :=
(

a −b/2
−b/2 c

)
∈ Λ′ and

consider the embedding

φ : H×H −→ H2 ∩A⊥, φ(τ1, τ2) :=
(
λ2τ1+(λ′)2τ2 λµτ1+λ′µ′τ2
λµτ1+λ′µ′τ2 µ2+(µ′)2τ2

)
= ΩT

(
τ1 0
0 τ2

)
Ω, where Ω :=

(
λ µ
λ′ µ′

)
.

For any M =
(
α β
γ δ

)
∈ PSL2(O# ⊕O),

φ(M · (τ1, τ2)) = Ψ(M) · φ(τ1, τ2), where Ψ(M) =

(
ΩT 0
0 Ω−1

)( α 0 β 0
0 α′ 0 β′

γ 0 δ 0
0 γ′ 0 δ′

)(
Ω−T 0

0 Ω

)
∈ Sp4(Z).

In particular, if F is a Siegel modular form then F ◦ φ(τ1, τ2) is a Hilbert modular form. This should be
thought of as the 0th pullback to the Humbert surface A⊥. We will write out the higher pullbacks. Any

index T =
(

t1 t2/2
t2/2 t3

)
∈ Λ′ has orthogonal projection to A⊥ given by

〈T,A〉
〈A,A〉

A = −at1 − bt2/2 + ct3
dO

A

with norm −(at1− bt2/2 + ct3)2/dO. Therefore, if F (z) =
∑
T c(T )qT is a Siegel modular form then its N th

pullback to A⊥ is

PA
⊥

N F (τ1, τ2) =
∑
T

c(T )Gk−1
N

(
− 2(at1 − bt2/2 + ct3), dOdet(T ) + (at1 − bt2/2 + ct3)2

)
qλ

2t1+λµt2+µ2t3 ,

where qν = e2πi(ντ1+ν′τ2) as usual.

Remark 6.4. Similar pullbacks can be written down for divisors A⊥ where det(A) is a negative square
(which, roughly speaking, corresponds to taking O ⊆ K := Q⊕Q). A particularly simple case is A = ( 0 1

1 0 ),
where H2 ∩ A⊥ is the diagonal; the pullbacks in this case are tensor products of elliptic modular forms of
level one, given by the formula

PA
⊥

N F (τ1, τ2) =
∑
T

c(T )Gk−1
N (t2, t1t3)qt11 q

t3
2 .

This is a special case of the more general operator defined by Ibukiyama (compare [14], 3.1.1).

Example 6.5. We will work out an example involving the pullbacks of a meromorphic modular form to a
Heegner divisor along which it has a pole following Remark 3.10. Let q1 = e2πiτ1 , r = e2πiw, q2 = e2πiτ2 and
let

Ψ10 (( τ1 w
w τ2 )) = q1q2(r1/2 − r−1/2)2

(
1− 2(r + 10 + r−1)(q1 + q2) +O(q1, q2)2

)
be Igusa’s weight 10 cusp form on H2: that is, up to a multiple, the discriminant of the genus two curve
whose Jacobian has modulus τ = ( τ1 w

w τ2 ) if τ is not equivalent to any point with w = 0, and it has a double
zero along the diagonal. The physical meaning of the Fourier-Jacobi coefficients of Ψ−1

10 is well-known (e.g.
[7]). It was recently proved [18] that the Taylor coefficients of Ψ−1

10 about the divisor w = 0 have a beautiful
18



interpretation in terms of the reduced Gromov-Witten theory of spaces X = S × E where S is a projective
K3 surface and E is an elliptic curve:

F (( τ1 w
w τ2 )) := −w2Ψ−1

10 (( τ1 w
w τ2 )) =

∞∑
g=0

∞∑
h=0

∞∑
d=0

(2π)2gNg,h,dq
h−1
1 qd−1

2 w2g,

where Ng,h,d is the Gromov-Witten invariant counting genus g curves on X up to translation in a fixed class
(β, d) ∈ H2(X,Z). Here β ∈ H2(S,Z) is a primitive lattice vector satisfying β · β = 2h − 2, and d ∈ N0 is
understood as an element of H2(E;Z).

We obtain meromorphic modular forms for SL2(Z) × SL2(Z) (in fact, holomorphic modular forms di-
vided by ∆(τ1)∆(τ2)) by pretending that F is modular of weight (−12) and formally applying Ibukiyama’s
operators:

Pw=0
N F (τ1, τ2) = (2πi)−NG−13

N (∂w, ∂τ1∂τ2)
∣∣∣
w=0

F (( τ1 w
w τ2 )) .

Explicitly these pullbacks have Fourier expansions

Pw=0
N F (τ1, τ2) =

∞∑
h=0

∞∑
d=0

∑
2(n1+g)=N
n1+2g≤13
n1,g≥0

(−1)g
13!

n1!(2g)!(13− n1 − 2g)!
Ng,h,d(h− 1)n1(d− 1)n1qh−1

1 qd−1
2 .

These vanish trivially when N > 26 or when N is odd. In the first two nontrivial cases we find:
(i) When N = 0,

Pw=0
0 F (τ1, τ2) =

∞∑
h,d=0

N0,h,dq
h−1
1 qd−1

2 =
1

∆(τ1)∆(τ2)
;

(ii) When N = 2, the nonexistence of (holomorphic) modular forms for SL2(Z)×SL2(Z) of weight two yields

Pw=0
2 F (τ1, τ2) = 13

∞∑
h,d=0

(
− 6N1,h,d + (h− 1)(d− 1)N0,h,d

)
qh−1
1 qd−1

2 = 0.

6.3. Siegel modular forms II. Let A be a symmetric positive-definite (2×2) matrix with integral entries.
If F : H2 → C is a Siegel modular form of weight k then f(τ) := F (Aτ), τ ∈ H satisfies

f
(aτ + b

cτ + d

)
= F

( (
aI bA
cA−1 dI

)
· (Aτ)

)
= (cτ + d)2kf(τ) for all

(
a b
c d

)
∈ Γ0(detA).

This should be thought of as the 0th pullback from orthogonal modular forms for SO+(2, 3) to an embedded
curve corresponding to SO+(2, 1). We will consider the higher pullbacks.

The orthogonal projection of T adj ∈ Λ′ to A is tr(TA)
2det(A)A with norm tr(TA)2

4det(A) . For any B ∈ A⊥ we obtain

the N th pullback in the direction B ⊗ ...⊗B of F (z) =
∑
T c(T )qT as

PNF (τ ;B ⊗ ...⊗B) =
∑
T

c(T )G
k−1/2
N

(
tr(TB),−det(B)tr(TA)2

4det(A)

)
qtr(TA), qn = e2πiτ ,

and we obtain the pullbacks in general directions by polarization.

For example, the lowest order pullbacks to AH ⊆ H2 are

P0F (τ) = F (Aτ) =
∑
T

c(T )qtr(TA) ∈M2k(Γ0(det(A));

P1F (τ ;B) =
∑
T

c(T )tr(TB)qtr(TA) ∈ S2k+2(Γ0(det(A)));

P2F (τ ;B1 ⊗B2) =
1

4det(A)

∑
T

c(T )
(

(4k + 2)det(A)tr(TB1)tr(TB2) + tr(Badj1 B2)tr(TA)2)
)
qtr(TA)

∈ S2k+4(Γ0(det(A)));

19



and

P3F (τ ;B1 ⊗B2 ⊗B3) =
1

4det(A)

∑
T

c(T )
[
(4k + 6)det(A)tr(TB1)tr(TB2)tr(TB3)

+
(

tr(Badj1 B2)tr(TB3) + tr(Badj2 B3)tr(TB1) + tr(Badj3 B1)tr(TB2)
)

tr(TA)2
]
qtr(TA)

∈ S2k+6(Γ0(det(A))).

Here B, Bi are any symmetric (but not positive definite) complex matrices with tr(Badji A) = 0. Note that
if det(A) = 1 then all odd-order pullbacks are zero.

Example 6.6. As a numerical example, let q = e2πiτ , r = e2πiz, s = e2πiw and let

Ψ35 (( τ z
z w )) = q2s2(q − s)(r − r−1)

[
1− (q + s)(r2 + 70 + r−2) + 69(q2 + s2)(r2 + 33 + r−2)

+ qs(r4 + 70r2 − 32384r − 127074− 32384r−1 + 70r−2 + r−4) +O(q, s)3
]

be the unique (up to scalar) Siegel modular form of weight 35. Take A = ( 1 0
0 1 ) and fix the basis B1 =

(
1 0
0 −1

)
and B2 = ( 0 1

1 0 ) of A⊥ ⊗C. Then P0Ψ35, P1Ψ35, P3Ψ35 and P2Ψ35(τ ;B1 ⊗B1), P2Ψ35(τ ;B2 ⊗B2) are zero;
but

P2Ψ35(τ ;B1 ⊗B2) = P2Ψ35(τ ;B2 ⊗B1) = 71q5 − 10224q6 − 13257972q7 ± ... = 71E2
4E6∆5 ∈ S74(SL2(Z)).
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Inc., Boston, MA, 1985. ISBN 0-8176-3180-1. doi: 10.1007/978-1-4684-9162-3. URL http://dx.doi.org/10.1007/

978-1-4684-9162-3.
[10] Valeri Gritsenko. Fourier-Jacobi functions in n variables. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
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