Antisymmetric modular forms

1 Introduction

Let \(S \) be a Gram matrix of signature \((b^+, b^-)\). The purpose of this SAGE worksheet is to extend the algorithms in the program “PSS” to compute modular forms for the (dual) Weil representation attached to \(S \) in weights \(k \) for which \(2k + b^+ - b^- \equiv 2 \mod 4 \). It calculates the coefficients of the series

\[
R_{k,m,\beta} = \sum_{\lambda \in \mathbb{Z}} \lambda P_{k, \lambda^2 m, \lambda \beta}
\]

where \(P_{k,m,\beta} \) is the Poincaré series, where \(\beta \in S^{-1}\mathbb{Z}^{b^+ + b^-} \) and where \(m \in \mathbb{Z} - Q(\beta) \) is a positive number. These modular forms always have rational Fourier coefficients and for \(k \geq 3 \) they always span the cusp space \(S_k(\rho^*) \).

2 Functions

Let \(S \) be a Gram matrix with signature \((b^+, b^-)\), let \(e = b^+ + b^- \) and let \(k \) be a weight such that \(2k + b^+ - b^- \equiv 2 \mod 4 \).

The function

\texttt{DimensionFormula}(k,S)

computes the dimension of \(M_k(\rho^*) \) (modular forms) and \(S_k(\rho^*) \) (cusp forms) and outputs them as a list \([\dim M_k(\rho^*), \dim S_k(\rho^*)]\).

The function

\texttt{DiscriminantGroup}(S)

computes a list of representatives \(\gamma \) of the discriminant group \(S^{-1}\mathbb{Z}^e/\mathbb{Z}^e \). The function

\texttt{ReducedDiscriminantGroup}(S)

only outputs one representative from each pair \(\pm \gamma \) with \(Q(\gamma) \neq 0 \).

The function

\texttt{PSSd}(g,b,m,n,k,S)

returns the coefficient \(c(n, g) \) of \(q^n e_g \) in the series \(R_{k,m,\beta} \).

The function

\texttt{CuspSpan}(k,S)

returns a list of lists \([m, \beta]\) for which the series \(R_{k,m,\beta} \) are a basis of \(S_k(\rho^*) \).
3 Example: the Doi-Naganuma lift

We will compute some Doi-Naganuma lifts to $\mathbb{Q}(\sqrt{5})$. Hilbert modular forms for $\mathbb{Q}(\sqrt{5})$ are basically the same as orthogonal modular forms for the Gram matrix $S = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$ of determinant -5.

Gundlach proved that the ring of Hilbert modular forms for $\mathbb{Q}(\sqrt{5})$ is generated by the Eisenstein series E_2, E_6 of weights 2 and 6 and by two cusp forms s_5, s_{15} of weights 5 and 15. The cusp form s_{15} is symmetric of odd weight so it is not a Doi-Naganuma lift. However s_5 is a Doi-Naganuma lift. We can compute its input function up to a constant multiple using the commands

```plaintext
S = -matrix([[2,1],[1,-2]])
b = vector([2/5,1/5])
m = 1/5
for g in ReducedDiscriminantGroup(S):
    offset = frac(g*S*g/2)
    for n in range(10):
        print [g,n-offset,PSSd(g,b,m,n-offset,5,S)]
```

which outputs the vector-valued input function up to precision $O(q^{10})$. By changing the 5 in PSSd(g,b,m,n-offset,5,S) to 7 or 9 we obtain input functions whose Doi-Naganuma lifts are s_5E_2 and $s_5E_2^2$, because the spaces of Hilbert modular forms of those weights are one-dimensional.