
PSS examples

1 Introduction

This note gives a short explanation of what the program PSS calculates as well as a few examples to show
how to use it.

To any Gram matrix S (a symmetric integer matrix whose diagonal consists of even integers), we are
interested in modular forms for the dual Weil representation ρ∗ of the lattice Λ = Zn with quadratic form
q(v) = 1

2v
TSv. These modular forms are the obstructions to constructing input functions for the Borcherds

lift. If (b+, b−) is the signature of S, then nonzero modular forms exist only in weights k for which 2k+b+−b−
is an even integer; and for many applications, only those k for which 2k + b+ − b− ≡ 0 (4) are interesting.
PSS only works when 2k + b+ − b− ≡ 0 (4). (For example, classical (scalar-valued) modular forms come
from unimodular lattices, which necessarily have b+− b− ≡ 0 (4), so PSS cannot be used to try to construct
classical modular forms of odd weight.)

For large enough weight (k > 2), the basic modular forms one can construct are the Poincaré series

Pk,m,β =
1

2

∑
c,d

(
e(mτ)eβ

)∣∣∣
k,ρ∗

(
a b
c d

)
, β ∈ Λ′/Λ, m ∈ −q(β) + Z, m ≥ 0,

where e(mτ) = e2πimτ , and (c, d) runs through all pairs of coprime integers. For m = 0 (and q(β) ∈ Z), we
get the Eisenstein series

Ek,β = Pk,0,β =
1

2

∑
c,d

eβ

∣∣∣
k,ρ∗

(
a b
c d

)
.

These series were studied by Bruinier and Kuss who found a computable formula for their Fourier coefficients,
which are always rational.

The coefficients of the Poincaré series Pk,m,β , m > 0 are by nature much more complicated than those
of Eisenstein series. Instead, PSS calculates the coefficients of the series

Qk,m,β =
∑
λ∈Z

Pk,λ2m,λβ ,

which turn out to be rational numbers that can be evaluated exactly. The space spanned by Qk,m,β as β
runs through Λ′/Λ and m runs through (−q(β) + Z) ∩Q>0 always contains all cusp forms.

2 The functions

Fix a Gram matrix S with signature (b+, b−) and a weight k with 2k + b+ − b− ≡ 0 (4).

The function

DimensionFormula(k,S)

computes the dimension of Mk(ρ∗) (all modular forms) and Sk(ρ∗) (cusp forms) and outputs these as a list
[dimMk(ρ∗), dimSk(ρ∗)].

The function

DiscriminantGroup(S)

1



outputs a list of vectors that form a system of representatives of Λ′/Λ. The function

ReducedDiscriminantGroup(S)

is similar but only outputs one representative from each pair ±γ. ReducedDiscriminantGroup is usually more
useful because Qk,m,β = Qk,m,−β and because the coefficient c(n, γ) of qneγ in any modular form equals the
coefficient c(n,−γ) of qne−γ .

The function

EisensteinCoefficient(g,n,k,S)

returns the coefficient c(n, g) of qneg in the Eisenstein series Ek = Ek,0. We use the formula of Bruinier and
Kuss.

The function

PSS(g,b,m,n,k,S)

returns the coefficient c(n, g) of qneg in the Poincaré square series Qk,m,b.

The function

CuspSpan(k,S)

returns a list of lists [m,β] such that the differences Ek − Qk,m,β are a basis of Sk(ρ∗). Depending on the
lattice, this can take a long time.

If S is a negative definite matrix, then the function

BorcherdsPrincipalPart(k,S)

returns a list of principal parts of all input functions that produce Borcherds products of weight k for the
lattice Λ ⊕ II1,1 ⊕ II1,1, where Λ is the lattice attached to S. (The restriction to lattices that contain
two unimodular hyperbolic planes could probably be removed; if there is interest then I will look into this
further.) The principal parts in this list can be entered into the functions

WeylVector(inputs,S)

and

InputFunction(inputs,prec,S)

to calculate the Weyl vector and exponents of the Borcherds lift of that input function.

3 Example 1: Unimodular lattices

When S is any unimodular lattice, this algorithm produces classical modular forms of level 1. The algorithm
is faster for lattices of small dimension. The fastest input is the empty matrix S.

S = matrix([])

g = vector([])

b = vector([])

k = 8

for n in range(10):

print [n,EisensteinCoefficient(g,n,k,S), PSS(g,b,1,n,k,S)]

2



The output is

[0, 1, 1]

[1, 480, 480]

[2, 61920, 61920]

[3, 1050240, 1050240]

[4, 7926240, 7926240]

[5, 37500480, 37500480]

[6, 135480960, 135480960]

[7, 395301120, 395301120]

[8, 1014559200, 1014559200]

[9, 2296875360, 2296875360]

Of course, these coefficients must be the same because the space M8 is one-dimensional. We can double-
check that with the command

DimensionFormula(8,S)

which produces

[1,0]

The first weight where the dimension is greater than 1 is k = 12.

S = matrix([])

g = vector([])

b = vector([])

k = 12

for n in range(10):

print [n,EisensteinCoefficient(g,n,k,S), PSS(g,b,1,n,k,S)]

produces the output

[0, 1, 1]

[1, 65520/691, 7806960/77683]

[2, 134250480/691, 15082003440/77683]

[3, 11606736960/691, 1304953634880/77683]

[4, 274945048560/691, 30908983376880/77683]

[5, 3199218815520/691, 359661921161760/77683]

[6, 23782204031040/691, 2673619554553920/77683]

[7, 129554448266880/691, 14564649928832640/77683]

[8, 563087459516400/691, 63302965077769200/77683]

[9, 2056098632318640/691, 231148879035948720/77683]

So E12 = 1 + 65520
691 q + 134250480

691 q2 + ... and

Q12,1,0 = 1 +
7806960

77683
q +

15082003440

77683
q2 + ... = E12 +

304819200

53678953
∆.

(The denominators 691 and 77683 come from the numerators of zeta values ζ(−11) resp. ζ(−21). Letting
m grow will usually lead to larger denominators.)

S = matrix([])

k = 12

CuspSpan(k,S)

produces the output

[[1, ()]]

which implies that E12 −Q12,1,0 spans the cusp space S12.

3



4 Example 2: The Kohnen plus space

Modular forms of level 4N with N squarefree and weight k = 2n − 1/2 that satisfy Kohnen’s plus space
condition are equivalent to vector-valued modular forms of weight k for the Gram matrix S = (2N).

For k = 7/2 and S = (2), the input

S = matrix([2])

b = vector([0])

k = 7/2

for g in ReducedDiscriminantGroup(S):

offset = frac(g*S*g/2)

for n in range(10):

N = n - offset

print [N,EisensteinCoefficient(g,N,k,S),PSS(g,b,1,N,k,S)]

produces

[0, 1, 1]

[1, 126, 126]

[2, 756, 756]

[3, 2072, 2072]

[4, 4158, 4158]

[5, 7560, 7560]

[6, 11592, 11592]

[7, 16704, 16704]

[8, 24948, 24948]

[9, 31878, 31878]

[-1/4, 0, 0]

[3/4, 56, 56]

[7/4, 576, 576]

[11/4, 1512, 1512]

[15/4, 4032, 4032]

[19/4, 5544, 5544]

[23/4, 12096, 12096]

[27/4, 13664, 13664]

[31/4, 24192, 24192]

[35/4, 27216, 27216]

so
E7/2 = Q7/2,1,0 =

(
1 + 126q + 756q2 + ...

)
e0 +

(
56q3/4 + 576q7/4 + ...

)
e1/2.

This corresponds to the Cohen Eisenstein series

H(τ) = 1 + 56q3 + 126q4 + 576q7 + 756q8 + ...

of weight 7/2 and level 4, which spans the Kohnen plus space. These coefficients also occur in the Jacobi
Eisenstein series E4,1. For modular forms of weight 2n+ 1/2 you can instead use the Gram matrix (−2N).

5 Example 3: Qk,m,β at nonzero β

Let S be the matrix

(
−4 −2
−2 −4

)
. For weight k = 3, the dimensions of Mk(ρ∗) and Sk(ρ∗) are 3 and 2,

respectively, as we see by computing

4



S = matrix([[-4,-2],[-2,-4]])

k = 3

DimensionFormula(k,S)

However, when we calculate

S = matrix([[-4,-2],[-2,-4]])

b = vector([0,0])

k = 3

for g in ReducedDiscriminantGroup(S):

offset = frac(g*S*g/2)

for n in range(5):

N = n - offset

print [g,N,EisensteinCoefficient(g,N,k,S),PSS(g,b,1,N,k,S),PSS(g,b,2,N,k,S)]

we do not see any cusp forms: in fact, Q3,m,0 = E3 for all m. The reason for this is that the entire cusp
space is supported on components other than e0. To find a basis of cusp forms, we use

CuspSpan(3,S)

which outputs

[[1/6, (2/3, 1/6)], [1/2, (1/2, 0)]]

In other words, E3 −Q3,1/6,(2/3,1/6) and E3 −Q3,1/2,(1/2,0) is a basis of S3(ρ∗). Entering

S = matrix([[-4,-2],[-2,-4]])

k = 3

for g in ReducedDiscriminantGroup(S):

offset = frac(g*S*g/2)

for n in range(5):

N = n - offset

E = EisensteinCoefficient(g,N,k,S)

print [g,N,E-PSS(g,vector([2/3,1/6]),1/6,N,k,S),E - PSS(g,vector([1/2,0]),1/2,N,k,S)]

will list the first few of their Fourier coefficients.

6 Example 4: Small weights

In weight 1 this method does not produce cusp forms; however, the corrected Eisenstein series E∗1 (τ, 0) always
defines a modular form (which does not necessarily have constant term e0). EisensteinCoefficient(g,n,1,S)
now produces the corrected Eisenstein series. (Previously it did not correct the constant term.) For example,
the theta series of x2 + y2 is half of the output from the following.

S = matrix([[-2,0],[0,-2]])

g = vector([0,0])

for n in range(10):

print [n,EisensteinCoefficient(g,n,1,S)]

However the function PSS will raise an error in weight 1.

In weight 3/2 the formula for the Eisenstein series usually does not produce a modular form. However,
the function PSS will always produce a modular form (which may be identically 0). The functions Q3/2,m,β

are sometimes enough to span all modular forms but I do not think they are enough in general. The Gram
matrix S = (74) is probably a counterexample.

5



S = matrix([[-2,-1,0],[-1,-4,-1],[0,-1,-2]])

g = vector([0,0,0])

b = vector([5/6,1/3,5/6])

for n in range(10):

print [n,EisensteinCoefficient(g,n,3/2,S),PSS(g,b,1/6,n,3/2,S)]

In weight 2, the Eisenstein series and PSS both produce modular forms whenever the determinant of S
is not square. When det(S) is square, they may be quasimodular forms (but their difference is always a cusp
form). For nonsquare discriminants this program uses computations based on Pell-type equations that can
be very slow for large det(S) and large denominators of g and b.

For example, the space S2(ρ∗) for the lattice with Gram matrix S =

(
4 9
9 4

)
is two-dimensional, spanned

by E2 − Q2,1,0 and E2 − Q2,2/65,(61/65,9/65). Computing Q2,2/65,(61/65,9/65) is much slower than computing
Q2,1,0.

S = matrix([[4,9],[9,4]])

for g in ReducedDiscriminantGroup(S):

offset = frac(g*S*g/2)

for n in range(10):

print [g,n-offset,EisensteinCoefficient(g,n-offset,2,S) - PSS(g,vector([0,0]),1,n-offset,2,S),

EisensteinCoefficient(g,n-offset,2,S) - PSS(g,vector([61/65,9/65]),2/65,n-offset,2,S)]

7 Example 5: Borcherds products

In this section S must be a negative-definite matrix. The function BorcherdsPrincipalPart(k,S) finds the
principal parts of all input functions that lead to holomorphic Borcherds products of weight k for the lattice
given by appending two hyperbolic planes to S. From these principal parts one can read off the divisors of
these automorphic products.

Example. Axel Marschner’s thesis (http://publications.rwth-aachen.de/record/59634/files/05_
064.pdf, in particular page 90) works out some Borcherds products of small weights for paramodular forms
of level 5 (which are equivalent to certain orthogonal modular forms of type O(2, 3)). These arise from input
functions which are modular forms for the Weil representation attached to the Gram matrix S = (−10). We
can verify his computation with the command

S = matrix([[-10]])

BorcherdsPrincipalPart(k,S)

for various values of k.

This command does not make any use of parallelization and uses a slower algorithm for lattice point
enumeration than for example LattE. Its runtime increases quickly with the determinant of S. For large
lattices it is better to do things differently.

The Weyl vectors can be calculated with the function WeylVector. For the lattice (−2t) ⊕ II1,1 ⊕ II1,1
this produces a vector (ρ1, ρ2, ρ3) ∈ Q3. The corresponding Weyl vector in the picture of paramodular forms

of level t will be λ =

(
ρ1 tρ2
tρ2 tρ3

)
. For example to compute the Weyl vector for the paramodular Borcherds

product of weight 4 and level 5 we use

S = matrix([[-10]])

inputs = BorcherdsPrincipalPart(4,S)[0]

WeylVector(inputs,S)

6



to find the result (1/2, 3/20, 1/2); so the Weyl vector for the paramodular product is λ =

(
1/2 3/4
3/4 5/2

)
.

Finally the function InputFunction computes the input function F with given principal part up to specified
precision, by identifying F ·∆m as a cusp form for large enough m ∈ N. (This may take a while.) Example:
BorcherdsPrincipalPart(10,S) finds that there are two holomorphic products of weight 10 for the lattice
above. The first one is the square of the weight 5 product. We compute the input function of the second
one up to q5:

S = matrix([[-10]])

inputs = BorcherdsPrincipalPart(10,S)[1]

for L in InputFunction(inputs,5,S):

print L

The result is

[(0), 0, 20 + 1200*q + 20720*q^2 + 204160*q^3 + 1481200*q^4 + O(q^5)]

[(9/10), -1/20, 1 - 320*q - 5633*q^2 - 56768*q^3 - 416767*q^4 + O(q^5)]

[(4/5), -1/5, -492*q - 10044*q^2 - 107616*q^3 - 821648*q^4 + O(q^5)]

[(7/10), -9/20, 1 + 192*q + 5118*q^2 + 61824*q^3 + 506372*q^4 + O(q^5)]

[(3/5), -4/5, 20*q + 688*q^2 + 10480*q^3 + 95636*q^4 + O(q^5)]

[(1/2), -1/4, -510*q - 10880*q^2 - 119300*q^3 - 922880*q^4 + O(q^5)]

The list [γ, ν, f ] in the above output implies that the components of eγ and e−γ in F are both qνf(τ).
Compare this output to the computation on page 92 of Marschner’s thesis.

7


