Lecture notes - Math 110 Lec 002, Summer 2016
BW

The reference [LADR] stands for Axler’s Linear Algebra Done Right, 3rd edition.
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Sets and fields - 6/20

Set notation

[ Definition 1. A set is a collection of distinguishable objects, called elements. ]

Actually, this is not the correct definition. There are a number of paradoxes that
arise when you use the word “set” too carelessly. However, as long as you avoid self-
referential constructions like “the set of all sets”, or even “the set of all real vector
spaces”, there should be no problem.

Notation: We write
reM

to say that = is an element of the set M, and = ¢ M to say that it is not. We write
N C M or equivalently N € M

to say that a set IV is a subset of a set M; that means that every element of NV is also
an element of M. Not all authors agree on exactly what the symbol “C” means, but
“C” is always read the same way.

Sets can be defined either by listing their elements inside brackets { }, or by specifying
properties that define the set with a colon : or bar | .

Example 1.
{x cx€{1,2,3,4,5,6}, xiseven} ={2,4,6}.

Here are some common constructions with two subsets M and N of a set A.

Name Symbol | Definition

Complement Me {reA: g M}

Union MUN |{z€eA: x€ Morx e N}
Intersection MNON |{zreA: x€ Mandz € N}

Difference M\N |{z€A: zeMandx ¢ N} = M NN°
Cartesian product | M x N | {(z,y): v € M,y € N}.

Elements of the product M x N are pairs, or lists of two elements. The order
matters: (1,2) and (2,1) are different elements of N x N!



Definition 2. Let M and N be sets. A function f : M — N associates an
element f(x) € N to every element x € M.

Three properties of a function f: M — N are worth mentioning:
(i) f is injective, or one-to-one, if for any z,y € M, f(x) # f(y) unless = = y.
(i) f is surjective, or onto, if for any z € N, there is at least one element = € M such
that f(z) = z.
(iii) f is bijective if it is both injective and surjective.

Fields

Fields are the number systems we will use as coefficients throughout the course. There
are several axioms that our number systems have to obey. Most of these axioms are
very natural, and are common to all reasonable number systems - the axioms you should
pay particular attention to are (vi) and (vii) about existence of inverses. Don’t worry
about memorizing these axioms.

Definition 3. A field F = (F,+,-,0,1) is a set F, together with two distinct
elements 0,1 € F and functions

+:FxF—TF, :FxF—TF

which we write z + y instead of +(z,y) and xy instead of -(z,y), such that

(i) Addition and multiplication are commutative:
r4+y=y+x and zy = yx forall z,y € F.
(ii) Addition and multiplication are associative:
z+(y+2)=(x+y)+2z and z(yz) = (zy)z for all z,y, z € F.

(iii) 0 is the additive identity: = + 0 = z for all x € F.
(iv) 1 is the multiplicative identity: 1-x = x for all z € F.
(v) The distributive law holds:

z-(y+2)=zy+axz forallz,y,z € F.

(vi) For any = € FF, there is an additive inverse —z € F' such that (—z) + x = 0.

(vii) For any nonzero z € F\{0}, there is a multiplicative inverse x=! such that
~1

z -z =1

\. J

The notation suggests that identities and inverses are unique. This is true. If 0’ is
another additive identity, then
0=0+0"=0"



similarly, if 1’ is another multiplicative identity, then
1=1-1"=1"
If x has two additive inverses —z and (—x)’, then
—z=—x4+0=—-z+(z+ (—2))=(—z+z)+ (—2) =0+ (—z) = (—2);
similarly, multiplicative inverses are also unique.

Example 2. The rational numbers Q form a field with the usual addition and multi-
plication.

The real numbers R contain Q and many more numbers that are not in Q. They
also form a field with the usual addition and multiplication.

The integers Z are not a field, because elements other than +1 do not have multi-
plicative inverses in Z.

Example 3. Complex numbers C are polynomials with real coefficients in the variable
i, but with the understanding that i = —1. The operations on C are the usual addition
and multiplication of polynomials.

For example,

14+ =1+3+3>+*=14+3i-3—i=—-2+2i
and
(5+1) - (44 3i) =20+ (4 + 15)i + 3i* = 17 + 19i.

C contains R: any real number x € R is interpreted as the complex number z + 0: € C.
C is a field: most of the axioms should be familiar from working with real polynomials,
and the condition that remains to be checked is that every nonzero element is invertible.
Let a + bi € C\{0}; then either a or b is nonzero, so a® + b? > 0. Then we can multiply

= 1.

a b Z,>_(a—l—bz’)(a—bi)_aQHJQ
a2+b  a24+v2/) a? + b2 a2+ b2

(a+bi)-<

The complex numbers come with another important structure. Complex conju-
gation is defined by
a+bi:=a—"0bi, abeR.

Proposition 1. Let w, z € C be complex numbers. Then:
(Jw+z=w+7%;

(i) Wz =w - Z;

(111) Z = z if and only if z is real.

() z - Z is always real and nonnegative.




Proof. Write w = a + bi and z = ¢+ di with a,b,c,d € R. Then:

HwF+z=(a+c)+(b+d)i=(a+c)—(b+d)i=(a—bi)+ (c—di) =wW+7Z

(il) wz = (ac — bd) 4 (ad + be)i = (ac — bd) — (ad + be)i = (a — bi)(c — di) =W - Z;

(iii) 2 —Z = (¢ + di) — (¢ — di) = 2di, which is 0 if and only if d = 0; and that is true if
and only if z = ¢ is real.

(iv) z2:2 = (c+di) - (c—di) = (> +d?)+ (dc— cd)i = ¢ +d? is real and nonnegative. [J

The fourth property makes the formula for inverting a complex number more clear.

For example,
1 3— 44 33—

3+4i (3+4i)(3—4i) 25
There are many other examples of fields that are used in math. For example, there
are fields where the set F is finite. The smallest possible example of this is when F
contains nothing other than 0 and 1, and addition and multiplication are defined by

+]1 0] 1 -1 0 1
01 0] 1 01 0] O
11 1] 0 11 0] 1

Incredibly, most of the theorems in linear algebra (at least until around chapter 5
of our book) do not care whether F represents Q, R, C or any of the other possible
fields we could come up with. In most direct applications, it’s enough to study linear
algebra over R or C, but applying linear algebra to Q and to finite fields is a very useful
technique in areas like number theory, abstract algebra and cryptography.



Vector spaces - 6/21

Vector spaces

Definition 4 (LADR 1.19). Let F be a field. An F-vector space is a set V,
together with operations

+:VxV —V and -:FxV —V

called vector addition resp. scalar multiplication, such that:
(i) Addition is commutative: v +w = w + v for all v,w € V.
(ii) Addition is associative: (v 4+ w) +x =v + (w + ) for all v,w,z € V.

(iii) There is an additive identity (“zero element”) 0 € V such that v +0 = v for
allveV.

(iv) For any v € V, there is an additive inverse —v € V such that v + (—v) = 0.

(v) Scalar multiplication is associative: (Au)-v = X- (g -v) for all A\, u € F and
velV.

(vi) The distributive laws hold:
A(v+w) =X v+ dw and (A +p) - v = v+ po
forall \,u € F and v,w € V.

(vii) 1-v = v for every v € V.

J

Again, the additive identity and additive inverses are unique. This is the same ar-
gument as uniqueness for a field. See LADR 1.25 and 1.26 for details.

Condition (vii) may look unimpressive but it must not be left out. Among other
things, it makes sure scalar multiplication doesn’t always return 0.



Example 4. The basic example of a vector space you should keep in mind is the set

F" = {(ml,...,xn) DT, ..., X, € F}

of lists, or tuples, of n elements from F. We add lists and multiply by scalars compo-
nentwise:

(@1, ey @) + Y1y ooy Un) = (1 F Y1, ooy T+ Yn)y A (T1y 0y ) 1= (A1, oy Ay).

In particular, the field I itself is an F-vector space: it’s just F!.
The zero element in F" has the zero of F in each component: it’s

0=(0,...,0).
Try not to get the vector 0 € F” and the number 0 € F confused.
Example 5. Let S be any set. Then the set of functions
FS:={f:S = F}
is a vector space: we add functions by
(f +9)(@) = f(x) +g(z), €S, fgeF
and multiply by scalars by
A)(x) =X f(x), x €S, NeF.
The zero element of F° is the constant 0 function:
0:5—TF, 0x)=0Vu.
If S={1,...,n}, then we can identify F¥ with F" by
feF & (f(1),..., f(n)) € F™.
When S =N = {1,2,3,4,...}, we can elements of F* as sequences by
f €F & thesequence (f(1), £(2), £(3),...).
When we interpret FY as a space of sequences, we will denote it F*.
Example 6. C is a real vector space. The addition is the usual addition; and scalar

multiplication is the usual multiplication but only allowing reals as scalars.
Similarly, C and R can be interpreted as Q-vector spaces.

10



The following observations are not quite as obvious as they might appear.

Proposition 2 (LADR 1.29-1.31). Let V' be an F-vector space. Then:
(1) 0-v =0 for everyv € V;

(i1) A-0 =0 for every A\ € F;

(111) (—1) -v = —v for everyv € V.

Proof. (i) Since

0-v=(04+0)-v=0-v+0-v,
we can subtract 0 - v from both sides to get 0-v = 0.
(ii) Since

A-0=X-(040)=A-0+AX-0,

we can subtract A - 0 from both sides to get A -0 = 0.
(iii) This is because

(-1) - v+v=(-1)-v+1-v=(-1+1)-v=0-v=0

by (i), so (—1) - v is the additive inverse of v. O

Subspaces

Definition 5 (LADR 1.34). Let V' be an F-vector space. A subspace of V' is a
subset U C V such that:

(i) 0 € U;

(ii)) W +w € U for all v,w € U and A € F.

In particular, subspaces are vector spaces in their own right, with the same addition
and scalar multiplication.

Example 7. Consider the space V = R of all functions f : (0,1) — V. The subset
of continuous functions and the subset of differentiable functions are both subspaces.

Proposition 3 (LADR 1.C.10). Let U and W be subspaces of an F-vector space
V. Then the intersection U "W 1s also a subspace.

Proof. (i) Since 0 € U and 0 € W, the intersection also contains 0.
(i) Let v, w €e UNW and A € F. Since A\v +w € U and Av + w € W, the intersection
also contains \v + w. O

11



In general, the union of two subspaces is not another subspace. The correct analogue
of the union in linear algebra is the sum:

Proposition 4 (LADR 1.39). Let U and W be subspaces of an F-vector space
V. Then their sum

U4+W={veV: Juel weWwithv=u-+w}

15 a subspace of V', and it is the smallest subspace of V' that contains the union

UUW.

Proof. U + W contains 0 = 0+ 0, and: let uy,us € U, wy,ws € W and A € F. Then
)\(Ul == wl) == (UQ = w2) = (/\U1 = U2) = (Aw1 == w2) ceU+W.

U + W is the smallest subspace of V' containing the union U U W in the following
sense: let X be any subspace of V' containing U U W. Let u € U and w € W be any
elements; then

u,we UUW C X.

Since X is closed under addition, u+w € X; since u and w were arbitrary, U +W C X.
]

Be careful not to push the analogy between union and sum too far, though. Some
relations that are true for sets, such as the distributive law

AN(BUC) = (ANB)U(ANC),

are not true for subspaces with union replaced by sum: you can find a counterexample
with three lines in the plane R? for the claim

U1 N (UQ + Ug) = (U1 N Ug) + (U1 N Ug)

The special case of disjoint unions is important when studying sets, and this also
has an analogue to vector spaces:

Definition 6. Let U and W be subspaces of an F-vector space V. The sum of
U and W is direct if U N W = {0}. In this case, U + W is denoted U & W.

Of course, vector subspaces can never be truly disjoint because they always share 0.

In general, we can take sums of more than 2 subspaces:
U+ ..+ Upi={u+ ... +up: u €Uy, ..., Uy, € Up}.

We call the sum direct, written U; & ... @ U,,, if the sum is direct when interpreted as

|:<(U1 o Uy) @ Ug) e } U,

12



In other words, Uy N Uy = {0}, UsN (U + Uy) = {0}, ..., U N (Uy + ... + U,,—1) = {0}.

Be careful: a union of sets is disjoint if and only if each pairwise intersection is
empty. But a sum is not necessarily direct when each pairwise sum is direct. This
comes down to the failure of the distributive law. The example of three lines in the
plane R? is also a counterexample for this.

Proposition 5 (LADR 1.44,1.45). Let Uy, ...,U,, be subspaces of a vector space
V. The following are equivalent:

(i) The sum Uy @ ... ® Uy, is direct;

(i1) If v € Uy +...4+U,, is any element, then there are unique uy € Uy,...,u,, € U,
with v = Uy + ... + Up,;

(i1i) There do not exist elements uy; € Uy, ..., uy, € Uy, not all of which are zero,
such that uy + ... + uy = 0.

Proof. (i) = (ii): uq, ..., u,, must exist by definition of the sum U; + ... + U,,,. They are
unique, because: assume that

V=Ul + ... + Uy, = Uy + ... + Upp,

with 4, € Uy for all k. Then
U, — Uy, = (U — U1) + oo + (U1 — Um—1) € U N (Uy + ... + Upn1) = {0},
SO Uy, = Uy,. Then
Um—1 — Um—1 = (U1 — 1) + .. + (Gm-1 — Um-1) € Upn—1 N (U1 + ... + Up—a) = {0},

SO U1 = Uy,—1. Continuing in this way, we find that 4, = uy for all k.

(ii) = (iii): Certainly, 0 = 0+ ... + 0 is one way to write 0 as a sum of elements from
Ui, ...,;Upy. Claim (ii) implies that this is the only way.

(iii) = (i): Assume that Uy N (Uy + ... + Ux_1) # {0} for some index k, and choose an
element

0 7& Up = UL+ ... +up—1 € U, N (Ul + ...+ kal), with u; € Ul, e Up—1 € Up_1.

Then u; + ... +ug_1 —ur + 0+ ... + 0 is a combination of 0 by elements that are not all
0, contradicting claim (iii). O

13



Linear independence and span - 6/22

Linear independence, span and basis

Definition 7 (LADR 2.17). Let V' be a vector space. A finite set {vy, ..., v, } of
vectors is linearly independent if, given that

AU+ ... + Apu, = 0 for some Ay, ..., A\, €T,

we can conclude that all scalars A\, are 0.

. J

The empty set () vacuously fulfills this condition, so it is also linearly independent.
A set containing the zero vector can never fulfill this condition!

Sums of the form
)\1'1)1 + ...+ )\m’Um, )\1, ey >\m cF

are called linear combinations of vy, ..., v,,.

Definition 8 (LADR 2.5, 2.8, 2.27, 2.29). Let V' be a vector space.
(i) A finite set {vy, ..., v, } of vectors is a spanning set, or spans V, if every
v € V can be written as a linear combination

V=AU + .. + AU, Aty e, Ay € FL

(i) A finite set {vy, ..., v, } is a basis of V' if it is a linearly independent spanning
set. In other words, every v € V can be written in a unique way as a linear
combination

v = )\1’01 = ooo AF /\mvm, Al, ,)\m eF.

The two conditions for being a basis are equivalent: because having two different
representations
V= MU+ . + AU = 101 + oo F Uy

is the same as having the nontrivial combination
0= (A1 — p1)vr + oo + (A — L) Ui,
to zero. See LADR 2.29 for details.

14



More generally, the span of a set of vectors {vy,...,v,} is the set of all linear
combinations:

Span(vy, ..., Up,) := {)\lvl o F AU s A, e A € IF}
In other words,
Span(vy, ..., vy,) = Uy + ... + Uy, where U :=F - v, = {Avp : A € F}.

The sum U; + ... + U, is direct if and only if {vy, ..., v,,} was a basis.

Example 8. (i) One basis of F™ is given by the set
{el = (1,0,0,...,0), €5 := (0,1,0,...,0), ..., €y := (0,0,0,...,1)}.
(ii) The span of the sequences
(1,1,1,1,...), (0,1,2,3,4,...) € R®
is the set
{(ao, a0+ d,ao + 2d, ag + 3d,..) = ap(1,1,1,...) + d(0,1,2, ...), ap,d € R}

of “arithmetic sequences”.

(iii) The empty set ) is the only basis of the zero vector space {0}.

In most of the course, we will want to consider vector spaces that are spanned
by finite lists of vectors. Vector spaces that can be spanned by finitely many vectors
are called finite-dimensional. There are fewer interesting results that hold for all
infinite-dimensional vector spaces (but see the remarks at the end).

Proposition 6 (LADR 2.21). Let V' be a vector space and let {vy,...,v,m} be
linearly dependent. Then:

(i) There is some index j such that v; € Span(vy, ..., vj_1).

(ii) For any such indezx j,

Span({vy, ..., vm }\{v;}) = Span(vy, ..., vp,).

Proof. (i) Choose a linear combination
)\11)1 AF 000 AP )\mvm =0

with scalars Ay, ..., A, that are not all 0. Let j be the largest index such that \; # 0;
so the linear combination is actually

)\1U1+...+)\j’0j+0+...+0:0.

15



Then we can divide by A; and see

bs = —ﬁv _ A
i = 1

Aj Aj

vj_1 € Span(vy, ..., Up,).

(ii) For any index j such that v; € Span(vy, ..., vj_1), we can find scalars ¢y, ..., ¢;_; with
Vj = CU1 + ... + G115 1.
Now let v = M\vy + ... + A\pvp, € Span(vy, ..., vy,) be any linear combination; then
v=Mv1+ ...+ X191 + Aj(avs + ...+ ¢im1v1) + Ajravisn + o+ AU
is a linear combination only invovling {vy, ..., v, }\{v;}, so
v € Span({vy, ..., v }\{v;}).

Since v was arbitrary,

Span(vi, ..., Um) € Span({vy, ..., vm }\{v; }).
The converse inclusion

Span({v1, ..., vm }\{v;}) C Span(vy, ..., Uy,)

is obvious. O]

Proposition 7 (LADR 2.31). Let V be a finite-dimensional vector space and let
{v1, ..., vm} be a spanning set. Then some subset of {vy,...,v,} is a basis of V.

Proof. Consider the collection of all linearly independent subsets of {vq,...,v,,}, and
pick any such subset B that has the largest possible size. Certainly, B is linearly
independent, so we need to show that it spans V. Assume that it doesn’t, and choose
an index k such that v, ¢ Span(B). (If Span(B) contained vy, ..., vy, then it would
contain Span(vy, ..., v,,) = V.) Then BU {v;} does not satisfy claim (i) of the previous
proposition, so it must be linearly independent. This is a contradiction, because B had
the largest possible size. O]

Proposition 8 (LADR 2.33). Let V be a finite-dimensional vector space and
let {vq,...,v} be linearly independent. Then there is a basis of V' containing

{v1, .-y Um }

16



Proof. Consider the collection of all spanning subsets of V' that contain vy, ..., v,,, and
pick any such subset B = {v1, ..., Uy, Ums1, ..., v} that has the smallest possible size.
Certainly, B spans V', so we need to show that it is linearly independent. Assume it
is not; then by the linear dependence lemma (2.21), there is some index j such that
v; € Span(vy, ...,vj_1). Since {vy, ..., v, } is linearly independent, j must be greater than
m. Then, also by the linear dependence lemma,

{Ul, cory Umyy Umt1y -5 ’UT}\{’UJ'}

is a set containing v; whose span is still Span(vy, ..., v,) = V. Contradiction, because B
had the smallest possible size. O

Finally, here is an important result relating the sizes of linearly independent and
spanning sets. We’ll use this tomorrow.

Proposition 9 (LADR 2.23). Let V' be a finite-dimensional vector space, and
let {vy,...,v,} be a spanning set. Then every linearly independent set contains n
vectors or fewer.

Proof. Let {uy, ..., u,} be any linearly independent set, and assume that m > n. Then
uy # 0 is nonzero. If we write u; = Y1 | \;v;, then there is some coefficient \; # 0 that
is not zero. Without loss of generality, assume A\; # 0. Then {uy, v, ...,v,} also spans

V', since
n
V1 = )\Il (Ul — E )\’LU’L>
=2

Now assume we know that {uy, ..., ug, Vg1 1, ..., U, } is a spanning set for some 1 < k < m.
Then we can write

k n
Uk41 = Z)\iui + Z WiV, i, i € TF.
i=1 i=k+1
By linear independence of {uy,...,ug11}, at least one p; is nonzero; without loss of
generality, prr1 # 0. Then we can write

n

k
—1
Vk+1 = ,Uk+1<uk+1 - E Ay — E /ﬁz’Ui),
i=1

1=k+42

so {u1, ..., U1, Vg2, -, Un t also spans V.

By induction, we see that {uq, ..., u,} is a spanning set. This is impossible, because:
it implies that wu,, is a linear combination

n
Um = E Aglsg
i=1

17



so we get the nontrivial linear combination
AU F .+ AUy, — Uy, = 0

to zero. n

Example 9. No set of three vectors in F? can ever be linearly independent, since F?
has a spanning set with fewer than three vectors. This explains the counterexample
yesterday of three lines in R? - they can never form a direct sum.

Remarks on infinite-dimensional spaces

This section will not be tested: no homework or test problems will refer to infinite
linearly independent or spanning sets.

Generally speaking, linear algebra doesn’t allow any sort of limit processes. That
includes infinite sums. In an infinite-dimensional vector space, “linear independent”
and “spanning” sets can contain infinitely many vectors, but the definitions have to be
changed such that all linear combinations are finite.

Definition 9. Let V be an F-vector space.

(i) A subset M C V is linearly independent if all of its finite subsets are
linearly independent.

(ii) A subset M C V is a spanning set if 1/ is the union of the spans of all finite
subsets of M.

(iii) M is a basis of V' if it is a linearly independent spanning set.

. J

In other words, M is linearly independent if the only finite linear combination giving
0 is trivial; and it is a spanning set if every element of V' is a finite linear combination
of the vectors in M.

Example 10. The infinite set M = {1, z, 2% 2% 2, ...} is a basis of the space P(R) of
polynomials. Every polynomial has only finitely many terms, so it is a finite combination
of M; and a polynomial is zero if and only if its coefficients are all zero.

Example 11. Let V = F* be the space of sequences. Let e, be the sequence with 1
at position k£ and 0 elsewhere, and consider

M= {er,ea,e4,..} = {(1,0, 0,0,...),(0,1,0,0,...),(0,0,1,0, ...), }

M is linearly independent, but it is not a basis: the sequence (1,1,1,1,1,...) is not a
finite linear combination of M.

18



Proposition 7 and proposition 8 still apply to infinite-dimensional spaces: every lin-
early independent set can be extended to a basis, and every spanning set shrinks to
a basis. In particular, every vector space (even an infinite-dimensional space) has a
basis. The proofs are similar - but picking the subset B that has the largest/smallest
possible size is no longer possible to do directly. Its existence depends on Zorn’s lemma,
or equivalently the axiom of choice. If you don’t see why this is a difficulty, then try
writing down a basis of F>°!

Proposition 9 still applies in the sense that there is always an injective map from
any linearly independent set into any spanning set.
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Dimension - 6/23

Dimension

Proposition 10 (LADR 2.35). Let V' be a finite-dimensional vector space. Then
any two bases of V' have the same size.

Proof. Let By and By be bases. We use LADR 2.23 twice.
(i) Since B is linearly independent and By is spanning, #B; < #B5s.
(ii) Since By is linearly independent and B, is spanning, #Bs < #B5;. O

This is still true for infinite-dimensional vector spaces, but it is harder to prove.

Definition 10. Let V' be a vector space. The dimension of V' is the size of any
basis of V.

Example 12. The dimension of F” is n. The basis
e1 = (1,0,0,...,0), e = (0,1,0,...,0), ...e,, = (0,0,0,..., 1)
consists of n vectors.

Example 13. Let P,.(F) denote the space of polynomials of degree less than or equal
to r. Then the dimension of P.(IF) is (r 4+ 1), because this is the size of the basis
{1,2,2% ..., 2"}

Example 14. Over any field, the zero vector space V' = {0} has dimension 0. The
only basis is the empty set (), which has zero elements.

Example 15. C? can be interpreted either as a C- or an R-vector space. The dimension
of C? over C is 2. The dimension of C? over R is 4; one example of a real basis is

(1,0), (4,0), (0,1), (0,7).

20



If we know the dimension of V' in advance, then it becomes easier to test whether
sets are a basis:

'a 3

Proposition 11 (LADR 2.39, 2.42). Let V' be a finite-dimensional vector space
of dimension d = dim(V).

(i) Any linearly independent set of d vectors is a basis.

(i1) Any spanning set of d vectors is a basis.

Proof. (i) Let M be a linearly independent set of d vectors, and extend M to a basis
B. Then B also has d vectors, so M = B.

(ii) Let M be a spanning set of d vectors, and shrink M to a basis B. Then B also has
d vectors, so M = B. O

This claim fails dramatically for infinite-dimensional vector spaces. It cannot be
fixed.

Example 16. Let a € R be a real number. Then {1,z —a, (z — a)?,...,(x —a)"} is a
linearly independent subset of P, (R), since all of the elements have different degrees:
there is no way to write a polynomial as a sum of polynomials of lower degree. It must
be a basis of P,(R), because it consists of (n + 1) vectors.

Without input from calculus, it is not that easy to verify directly that this is a spanning
set. However, it is clear in the context of Taylor’s theorem:

p//(a)
2

p™(a)

(r—a)+..+ oy

p(x) =pla) - 1+ p'(a) - (x —a) + (z —a)",

since all derivatives of order greater than n of a polynomial p € P,(R) are 0.

Proposition 12 (LADR 2.38). Let V' be a finite-dimensional vector space, and
let U CV be a subspace. Then dimU < dimV; and dim(U) = dim(V) if and
only if U =1V.

Proof. Any basis of U is still a linearly independent subset in V/, since linear indepen-
dence doesn’t depend on the ambient space. Therefore, the size of any basis of U must
be less than or equal to the size of any spanning set of V'; in particular, this includes
any basis of V.

If dim(U) = dim(V'), then any basis of U is a linearly independent set of dim(V") vectors
in V', and therefore a basis of V. Since U and V are spanned by the same basis, they
are equal. O

Finally, we will work out the relationship between the dimensions of the intersection
and sum of two subspaces. We need to understand how to choose bases for two subspaces
in a way that makes them compatible together.
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Proposition 13. Let V' be a finite-dimensional vector space and let U W C V
be subspaces. Let C be any basis of UNW. Then there is a basis B of U+ W such
that BNOU is a basis of U, BOAW s a basis of W, and BNUNW =C.

Proof. Since C is linearly independent in U N'W, it is also linearly independent in each
of U and W. We can extend C to a basis Cy of U and Cy, of W. Written explicitly, let

C={v,...,v.}, Cuy=Hv1,...,vp,u1,...,u}, Cow ={v1,..., 0, w1, ..., W }.

Then
B = {v1, .y Up, Ug, ooy Ug, W1, ..y Wi}

is a basis of U + W, because:
(i) Let w +w € U + W be any element. Then w is a linear combination
of {vi,...,v,u,...,ux} and w is a linear combination of {vq,...,v., wy,...,w;}, so
adding these combinations together, we see that u + w is a linear combination of
{1y ooy Upy Uy oy Up, W1, oy W T
(ii) Let

AU+ o+ AU F g e+ gy + w4 v =0

be any combination to 0. Then

vi= \)\lvl + o AU Uy L+ Pl = W1 — ... — LWy € Unw,

-~

cU ew

so there are coefficients a; € F such that
V=V + ... + QU
Then
(M —ap)vr + oo + (N — @) vr + g + o+ g

= ()\11)1 4+ N F Uy e+ ,ukuk> - (ozwl + ...+ arvr>

=v—ov=0.

Since {vy, ..., v, U1, ..., ux } was linearly independent, it follows that \; = a; and p; =0
for all < and j. Therefore,

0= Mo+ ... + A0 + g + o + pgug + 1wy + ..+ vy
=NV + ...+ M0 +0+ ...+ 0+ 1wy + ... + yuy

is a linear combination to 0 of the basis {vy, ..., v, w1, ..., w;} of W. Therefore, \; = 0
and v; = 0 for all ¢, j. O
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Here is the corollary:

Proposition 14 (LADR 2.43). Let U and W be subspaces of a finite-dimensional
vector space V. Then

dim(U + W) + dim(U N W) = dim(U) + dim(W).

Proof. This follows from looking at the sizes of the bases in the previous proof. In that
notation,

dim(UNW) =r, dim(U) =r +k, dim(W) =r + 1, dim({U +W) =r+k+1.

We see that (r+k+10)+r=(r+k)+ (r+1). O

In concrete examples, we are often given a basis of U and W. In this case, it is not
that hard to find a basis of U + W: we know that the union of the two bases will span
U 4+ W, so we shrink it to a basis by eliminating unnecessary vectors. On the other
hand, it is not so easy to find a basis of U N W directly.

Example 17. Consider the two planes
U= Span<(1, 1,0), (0,1, 1)), W= Span((l, 2,2), (2,2, 1))
in F3. Tt is straightforward to check that (1,2,2) is not in the span of (1,1,0) and
(0,1,1) over any field: if we could write
(1,2,2) = \(1,1,0) + u(0,1, 1),

then comparing the first coefficient shows that A = 1 and comparing the last coefficient
shows that p = 2, but then (1,1,0) +2-(0,1,1) = (1,3,2) # (1,2, 2). Therefore,

(1,1,0), (0,1,1), (1,2,2)

is a basis of U + W.
The formula shows that these planes intersect in a line:

dim(U N W) = dim(U) + dim(W) — dim(U + W) =2 +2 — 3 =1.
In fact, U N W = Span(—1,0, 1), but it takes more work to figure that out.

Example 18 (LADR 2.C.17). For a sum of three subspaces, we can use this formula
twice to see that

dlm(U1 + Ug + Ug) = d1m(U1 + Ug) + dlm(Ug) — d1m((U1 + Ug) N Ug)

= dlm(Ul) + dlm(Ug) + dlm(U;»,) - dlm(U1 N UQ) — dlm((Ul + Ug) N U3)

Unfortunately, it is impossible to simplify dim((U; + Us) N Us) further. In particular,
the inclusion-exclusion principle for counting the elements in the union of three sets
does not carry over. The usual example (three lines in F?) is a counterexample to the
exact claim in 2.C.17.
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When all these intersections are {0}, the formula simplifies considerably:

Proposition 15 (LADR 2.C.16). Let Uy, ...,U,, €V be subspaces that form a
direct sum. Then

dim(U; & ... & Uy,) = dim(Uy) + ... + dim(U,,).

Proof. Induction on m.
(i) When m = 1, this is obvious: dim(U;) = dim(Uy).
(ii) Assume this is true for a direct sum of (m — 1) subspaces, for m > 2. Then

)
dm(U1 & ... 0 Uy,) =dim(U; & ... ® Up—1) + Uy)
=dim(U; & ... ® Uy—1) + dim(U,,) — dim(SUl S..oUn1)N U@)

{0}

= dim(U7) + ... + dim(Uy,—1) + dim(Uy,).
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Linear maps - 6/27

Linear maps

Let F be a field. U, V, W and X will denote F-vector spaces. S and T will denote
linear maps.

Definition 11 (LADR 3.2). A function 7" : V' — W is linear if it respects linear
combinations:

T()\1'U1 AF oo TP )\n’Un) = )\1T(’U1) AF oo TF )\nT<Un); for U1,y ..., Up € ‘/, )\1, ...,)\n eF.

It is enough to know that T'(v + w) = T(v) + T'(w) and T'(Av) = AT'(v) for all
v,w €V and X € F, because every linear combination is built up from sums and scalar
multiplication. Equivalently, T is linear if and only if

TA+w)=NT(v) +T(w), vyweV, XeF.

Example 19. There are lots of examples! Matrix maps are linear (we’ll see more about
this tomorrow); differentiation between appropriate function spaces is linear; and the
map sending a periodic function to its sequence of Fourier coefficients is linear.

Proposition 16 (LADR 3.7). The set of linear maps from V to W is a vector
space with respect to the usual addition and scalar multiplication of functions,
denoted L(V,W).

Proof. Let S,T : V — W be linear maps and p € F. Then the linear combination
(1S +T)(w) i= - S@) + T(v)
is linear, because for any v,w € V and A € F,

(WS +T) A +w)=p-SAv+w)+T(A+w)
= u(AS(v) + S(w)) + XT'(v) + T'(w)
=X (WS +T)(v)+ (uS +T)(w).

The additive identity is the zero function O(v) = 0, v € V. This makes L(V, W) a
subspace of the vector space of all functions from V' to W. O]
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Proposition 17 (LADR 3.8). Let T : U — V and S : V. — W be linear maps.
Then their composition

ST :U — W, ST(u):=S(T(x))

18 linear.

Proof. For any A € F and u,v € U,

ST(Mutv) = S(T(utv)) = SOT(W)+T(v)) = AS(T(w)+S(T(v)) = AST (u)+ST(v).
[]

The composition is sometimes called the product - particularly when S, T are matrix
maps between spaces of the form F" - because it satisfies the basic axioms we expect a
product to have:

(1) associativity: (117%)T3 = T1(T5T3) for all linear maps T3 : U — V, Ty : V. — W,
T5: W — X,

(2) existence of identity: Tidy = idyT for all linear maps 7" : V' — W, where idy
is the identity on V (idy(v) = v Vv) and idy is the identity on W. If the vector space
on which idy is clear, then we denote it by I.

(3) distributive law: (S7 + So)T = SiT + SoT and S(T1 + Tz) = STy + STs.

Certainly, composition is not commutative in general: even if they are both defined,
ST and T'S are not necessarily maps between the same vector spaces.

Definition 12 (LADR 3.67). A linear map 7' : V — V from a vector space to
itself is called an operator on V. The space of operators on V is denoted L(V),
rather than £(V, V).

Even operators do not generally commute. Physics students may recognize the
following example:

Example 20. Let V' = {infinitely differentiable functions f : R — R}, and define
operators X, P € L(V) by

X(f)(z) =z f(x), P(f)(x):=f(z), zeR
Then (PX — XP)(f) = (zf) —xf' = f,s0 PX = XP =1 #0.

Now we will prove that, given a basis B of V', there is a bijection

L(V,W) < {functions B — W}.
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This is proved in a few steps.

Definition 13. Let 7': V — W and let U C V be a subspace. The restriction
of T to U is the linear function

T’UU—>VV, T\U(u) = T(U), uelUCV.

Proposition 18. Let Uy,...,U,, C V be subspaces that form a direct sum. Let
T; : Ug — W be linear functions. Then there is a unique linear function

T:-U1®..0U, — V with T|y, = T; for all 4.

Proof. The only way to define T' is
T(up + oo + ) = T(ug) + oo + T(up) :=T1(ur) + ... + Trn(um), u; € Ui

There is no ambiguity in this definition, since every element v € Uy & ... ® U,,, can be
written in only one way as v = uy+...+1u,,. The map T defined above is linear, because:
for any u;,v; € U; and X € FF,

T(A(ul + ot up) + (1 + .+ vm)>

= T(()\ul 1) 4+ g + vm))

=T1(Auy +v1) + . + Tn( Aty + vy)

= /\(Tl(ul) ¥ +Tm(um)) n (Tl(vl) Yo —|—Tm(vm))
= AT (ug + oo +up) + T(v1 + . + V). O

Proposition 19 (LADR 3.5). Let vy, ...,v, be a basis of V and wy, ...,w, € W.
Then there is a unique linear map T : V — W such that T'(v;) = w; for all j.

Proof. Consider the subspaces U; := I - v;. There is a unique linear map 7 : U; — W
with T;(v;) = wj, and it is

T; - U; — W, T;(Mv;) = dwj, X €F.
By the previous proposition, there is a unique linear map
T:-U,®.0U,=V — W with T|y, = Tj,
or equivalently 7'(v;) = w; for all j. O
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Range and null space

e 3N

Definition 14 (LADR 3.12, 3.17). Let T': V. — W be a linear map.
(i) The null space, or kernel, of T is

null(T) = ker(T) ={v eV : T(v) =0}.

(ii) The range, or image, of T is

range(T) = im(7) = {w € W: w =T (v) for some v € V}.

\. J

Example 21. Consider the differentiation operator D € L(P4(R)). The null space of
D is
null(D) = {p: p' =0} = Span(1).
The range is all of P3(R): since {1, x,z? 23 x*} spans P,(R),
{D(1), D(z), D(2*), D(z*), D(z*)} = {0, 1,2z, 32% 42°}

spans range (7).

Proposition 20 (LADR 3.14, 3.19). Let T € L(V,W). Then null(T) C V and
range(T) C W are subspaces.

Proof. (i) Since T'(0y) = Oy, we know that Oy € null(7) and Oy € range(7).
(ii) For any vy, v, € null(T") and A € F,

T(Avy 4 v3) = AT(v1) + T(v2) = A-0+0 =0,

S0 Avy + vg € null(T).
(iii) For any wy; = T'(v1) and wy = T'(v2) € range(T) and A € F,

Awy + wy = AT (v1) + T(ve) = T(Avy + v9) € range(T). O

Definition 15. The dimensions of null(7") resp. range(7T’) are called the nullity
resp. the rank of 7.

Nullity and rank are more precise variants of the concepts of “injective” and “sur-
jective”, in the following sense:

Proposition 21 (LADR 3.16, 3.20). Let T € L(V,W). Then T is injective if
and only if null(T') = {0}, and T is surjective if and only if range(T) = W.
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Proof. (i) Assume that T is injective, and v € null(T"). Then T'(v) = 0= T(0), sov = 0.
On the other hand, assume that null(7") = {0}. If T'(v) = T'(w), then T'(v — w) = 0, so
v—w € null(T) = {0} and v = w.

(ii) T is surjective if and only if range(7T") = W: this is clear from the definition of
“surjective”. O]

The following result is called the Fundamental Theorem of Linear Maps in the
textbook. Many other books call it the rank-nullity theorem. The rank-nullity theorem
itself is only a statement about dimensions; for some applications, the particular basis
we construct is important, so it is included in the statement below.

Proposition 22 (LADR 3.22). Let V' be a finite-dimensional vector space and
let T € L(V,W). Then there is a basis {uy, ..., Un, v1,...,0n} of V such that
{uy, ...;um} is a basis of null(T') and T(vq),...,T(v,) is a basis of range(T). In
particular,

dim(V) = dimnull(7) + dim range(7").

Proof. Choose any basis {ug,...,u,} of null(7) and extend it to a basis
{u1, ooy U, 01, ooy v} of Vo Then T'(vy), ..., T (v,,) is a basis of range(T’), because:
(i) Tt is linearly independent: assume that

MT(v1) + ... + \T(vy,) = 0.
Then T'(A\v; + ... + \pv,) =0, so
A1+ ... + Av, € null(T) = Span(ug, ..., Upy,).
If we write Ajvq + ... + \yvp, = paug + ... + Uy, then
Pty + oo+ Uy — AU — oo — AU, =0

is a combination to 0; since {uj, ..., Up, V1, ..., v, } is linearly independent, we see that
all p1; and A; are 0.
(ii) It spans range(7'): let w = T'(v) € range(T") be any element, and write

V=AU F oo + AU F U F e Uy,
Then

Tw) = MT(v1)+ ...+ AT (vn) +p1 T(ur) 4o o T() = MT(01) + .. + X T (vy,). O
—— ——

=0 =0
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Matrices - 6/28

Matrices

For working with matrices, we use the convention that F" consists of column vectors,
rather that row vectors.

Definition 16 (LADR 3.30,3.39). Let m,n € N. An (m X n)-matrix is a rect-
angular array
aip ... Qip
A = (aij)i; =
A1 e G

with entries a;; € F. The set of matrices is denoted F"".

. J

It is straightforward to check that F""™ is an F-vector space with entrywise addition
and scalar multiplication, just as F” is. A natural basis is given by the matrices F; ;,
with a 1 in the ¢th row and jth column, and 0 elsewhere. In particular, dim(F™") = mn.

Example 22. In C?3,
147 34+20 4 n 4—20 5 1\ (5—1 842 5
5 i 2+1 3 2 i) 8 241 242i)°

(1+1)- 1+47 34+2¢ 4 B 21 145 4444
5 i 24141) \b+5 —14+7 14+3i/)°

Example 23. A natural basis for F?? is

1 0 0 1 0 0 0 0
FEi,= (0 0), Eip= <0 0), FEoq = (1 O)’ Eyo = (0 1)-

and
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Definition 17 (LADR 3.32). Let B = {vy,...,v,} be a basis of V and let
C = {wy,...,w,} be a basis of W. Let T : V. — W. The representation
matrix of 7" with respect to B and C is the matrix

M(T) = ME(T) = (aiz)i,
where the entries a,; are defined by

m

T(Uj) = Q1;W1 + ...+ Ay j Wy, = E QW5 .
i=1

Example 24. Consider the linear map

T: P3(C) — (C47 T(p) = (p(l),p(i),p(—l),p(—i)).

We will calculate its representation matrix with respect to the usual bases {1, x, 2%, 3}
and {ej, eq, €3, €4}

The first column of M(T') is found by applying T" to the constant 1, and writing the
result as a column vector; we get

M(T) =

D N0 N D

— = =
EURESCEREC R}
-\D .\J -Q -Q

The second column of M(T") is found by applying T to z; we get

M(T) =

— = =
B EEECERECR
-Q -\D .\D .\3

The third column of M(T) is found by applying T to x?%; we get

1 1 1 7

1 ¢z =17
M(T) = 1 -1 1 7

1 - -1 7

Finally, apply T to 2 to find

1 1 1 1

1 7 -1 —
M(T) = 1 -1 1 -1

1 —i -1



The representation matrix gives a correspondence between matrices and linear func-
tions. It is useful in two ways: it is easier to do practical calculations with matrices,
but it is easier to prove theorems about linear functions.

Proposition 23. Let V. and W be finite-dimensional vector spaces. Let
B = {vi,....,v,} be a basis of V and let C = {wy, ..., wy,} be a basis of W. There
18 a biyjection

LV,W) < F™" T — M(T).

This bijection also preserves the vector space structure; i.e. M(S+T) = M(S)+M(T)
and M(AT) = X - M(T).

Proof. For any elements z1, ..., z,, € W, there is a unique linear map 7" € L(V, W) with
T'(v;) = x; for all j; and for any elements xy,...,z,, € W, there is a unique matrix
(aij)i; with z; =" a;;w; for all j. In other words, there are two bijections

LV, W) < {listsxy, ..., z,, € W} <> matrices,

T (T(vl),...,T(vn)) — M(T). O

Definition 18 (LADR 3.62). Let V' be a finite-dimensional vector space with an
ordered basis B = {vy, ..., v, }. For any v € V| the coordinates of v with respect
to B are

M) = Mp):= | ... |, where v = N\v; + ...+ \v,.
An

In other words, M(v) = Y"1, Ne; if v =31, N,

Example 25. The coordinates of 1 + 2z + 322 € Py(R) with respect to the basis
1

{1, 2,22} are | 2
3

The coordinates of 1 + 2x + 3x? with respect to the basis {1 + z,1 + 2% x + 2} are
0
1|, because
2

1+22+32°=0-(1+2)+1-(1+2%)+2- (z+2°).
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Definition 19 (LADR 3.65). We define the product of a matrix and a vector by
ME(T) - Mp(v) := Me(T(v))

for any linear map 7" : V' — W and vector v € V| and any bases B of V' and C of
w.

. J

We should check that this doesn’t depend on the linear maps and bases, but only on
the matrix ME(T) and column vector Mp(v). Let B = {vy,...,v,} and C = {wy, ..., w, }.
Let M(T) = (aij)i,j and v = Z;’L:I )\jvj- Then

n m

T(v) = zi: AT (v;) = Z ()\j Z aijwi> = i (Z aij)\j>wi7

j=1 i=1 i=1  j=1
SO

Mc(T(v)) = Zaz’j)\j:

which depends only on the matrix (a;;);; and the column vector (A;)j_;.

Example 26.

12 3\ ? C(1-542-743-9\ _ (46
23 4) \g) " \2:5+3-7+4.9) 7 \67)"

Example 27. Let T : P3(C) — C* T(p) := (p(1),p(i),p(—1),p(—i)) be the linear

map from above. To calculate T'(1+ 2z +2?), we can express 1+ 2z + 2% by coordinates
1
in the basis {1, z, 22 23}, i.e. % , and use matrix multiplication:
0
11 1 1 1 4
1 7+ -1 — 21 | 2
1 -1 1 -1 1l | o0
1 —i =1 4 0 —2i

The product (composition) of functions gives us a product of matrices:

Definition 20 (LADR 3.43). We define the product of two matrices by
ME(ST) := ME(S) - M5 (T),

for any linear maps 7' € L(U,V) and S € L(V, W), and bases A of U; B of V;
and C of W.
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We should check that this doesn’t depend on the linear maps and bases, but only
on the matrices M(S) and M(T') themselves. If A = {uy,...,u;}, B = {vy,..., v} and
C = {wy, ..., wy}, and M(S) = (a;;)i; and M(T) = (bjx);k, then M(ST) = (cit)ix is
defined as follows:

Z cipw; = ST (uy,)
i=1
= S(T'(ux))

(S
= ; bjxS(v;)
- z (z% DL

or in other words ¢;;, = 2721 aijbjk.

Example 28. Let T : P5(R) — P2(R) be the differentiation map and let S : Po(R) — P5(R)
be the antiderivative without constant term; i.e. S(p fo t)dt. With respect to
the standard bases, the composition ST has the matrlx

0 0 0 0000
1 0 0 8 (1) g 8 10100
0 1/2 0 000 3 0010
0 0 1/3 0001

Note that matrix-vector multiplication is a special case of matrix-matrix multipli-
cation: if we let T': F — V be the linear map with 7'(1) = v and choose the standard
basis {1} of F, then M(T) = M(v), and

M(ST) = M(S) - M(T) = M(S) - M(v) = M(S(v)).

The following properties are easier to check for the underlying linear functions,
rather than for matrix multiplication directly:
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Proposition 24.

(i) Let A € F™" B e F*" C € F™ be matrices. Then (AB)-C = A-(BC).
(i1) Let A € F™" and B,C € F™". Then A(B+ C) = AB + AC.

(111) Let A, B € F™" and C' € F™". Then (A+ B)C = AC + BC.

(iv) The identity matriz

1 0 0 0
0 1 0 0
I=M(dy)=[0 0 1 0| ern
00 0 .. 1

satisfies Al = A and IB = B for all A € F™" and B € F™".
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Isomorphisms - 6/29

Isomorphisms

Definition 21 (LADR 3.53, 3.58). Let V and W be vector spaces. A linear map
T :V — W is an isomorphism if there is a linear map S : W — V such that
If there is an isomorphism T : V' — W, we call V and W isomorphic and write
V=Ww.

Isomorphic vector spaces are, for most purposes, the same. The map T : V — W
can be thought of as a “relabeling” of the elements of V.

As usual, the inverse S, if it exists, is unique:

Proposition 25 (LADR 3.54). Let T : V. — W be an isomorphism. Then the
inverse is unique, and is denoted T=1: W — V.

Proof. Assume that S;,Sy : W — V are two linear maps such that 7'S; = idy = T'S,
and SlT = ldV = SQT Then

Sl = Sl(TSQ) = (SlT)SQ - SQ. D

What we have shown here is a little stronger: if T" has both a “left-inverse” and a
“right-inverse”, then the left- and right-inverses are equal. It follows that any two left-
inverses are equal: they both equal the right-inverse. Similarly, any two right-inverses
are equal.

We can’t prove this if we don’t know that 7" has an inverse on both sides; for
example, the matrix A = (1 2) has no left-inverse and infinitely many right-inverses:

(1 2)-(1_2‘”)=1=idF, z el
T
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Proposition 26 (LADR 3.56). Let T': V. — W be a linear map. Then T is an
1somorphism if and only if it is both injective and surjective.

Proof. (i) Assume that 7" is an isomorphism. Then 7" is injective (i.e. null(7") = {0}),
because:
vemll(T) = v=T"YT(v))=T""0)=0.

T' is surjective, because: any w € W has the form
w = T(T " (w)) € range(T).
(i) Assume that T is injective and surjective. Define T~ such that
T~ !(w) = v is the unique vector with 7'(v) = w;

so T(T~Y(w)) = w and T~Y(T'(v)) = v. Then T~ is linear, because: for any A € F and
wy,we € W,

T(T (Awy +ws)) = dwy +wy = AXT(T™Hwy)) + T (T Hwy)) = TAT ™ Hwy) + T Hws))

shows that T (Aw; + wy) = AT wy) + T Hw,). O

Proposition 27 (LADR 3.59). Two finite-dimensional vector spaces are isomor-
phic if and only if they have the same dimension.

This is also true for infinite-dimensional vector spaces, although the dimension needs
to be made more precise than simply “oco”.

Proof. (i) Assume that 7' : V. — W is an isomorphism; then W = range(7") and
null(7") = {0}. By the rank-nullity theorem,

dim(V) = dimnull(7") + dim range(7") = 0 + dim(W).

(ii) Assume that V' and W have the same dimension, and choose bases {vy, ..., v,} of V'
and {wy, ..., w,} of W. Let

T:V—WandT ' W —V
be the unique linear maps such that 7'(v;) = w; and T~ (w;) = v;. Then
TT Y w;) = T(vj) = w; = idw (wy) and T7'T(v;) = T (w;) = v; = idy (v;),
so T7'T and idy, and 77! and idyy agree on a basis; so T !'T = idy and TT ! = idyy.

Therefore, T" is an isomorphism. O
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If we already know that the vector spaces V' and W have the same finite dimension,
then it becomes easier to test whether a linear map 7' : V' — W is an isomorphism.
(Often, proving surjectivity is the harder part, since for any w € W we have to “guess”
an element v € V with T'(v) = w.)

Proposition 28 (LADR 3.69). Assume that dim(V) = dim(W) < oo, and let
T € L(V,W). The following are equivalent:

(1) T is an isomorphism;

(11) T is injective;

(111) T is surjective.

Proof. (i) = (ii): This follows from LADR 3.56.
(ii) = (ili): By the rank-nullity theorem,

dimrange(7) = dim(V') — dimnull(7T") = dim(V') = dim(W);
=0
therefore, range(7") = W, and T is surjective.
(iii) = (i): By the rank-nullity theorem,

dimnull(7T") = dim(V') — dimrange(7T") = dim(V') — dim(W) = 0.

Therefore, null(7") = {0}, so T is also injective. By LADR 3.56, it is an isomorphism.
O]

Example 29. Let (2o, o), ---, (Zn, yn) be any (n+ 1) points in the real plane R?, where
X, ..., T, are distinct. We will show that there is a unique interpolating polynomial of
degree at most n; i.e. a polynomial p € P,(R) with p(z;) =y, for all j.
The map

T:Pu(R) — R™, T(p) := (p(x0), -, p(n))
is injective, because: any nonzero polynomial with (n+ 1) distinct zeros xo, ..., 2, must
have all of (z — xg),...,(x — z,) as factors, and therefore have degree at least n + 1.
This means that null(7") = {0}. By the previous theorem, it is also surjective.

Example 30. This fails for infinite-dimensional vector spaces. For example, the dif-
ferentiation map

T:PR)— PR), p—p
is surjective, but not injective.

Taking inverses reverses the order of multiplication:

Proposition 29 (LADR 3.D.1, 3.D.9). Let S,T € L(V) be operators.

(i) If S and T are both invertible, then ST is invertible with inverse
(ST)~! = T-15-1.

(i1) If ST is invertible, then S is surjective and T is injective.
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In particular, if V' is finite-dimensional, then S and T are both invertible, and by (i),
TS is also invertible. This does not need to be true when V is not finite-dimensional.

Proof. (i) We can check that
(T7'S™H - (ST) =T S 'ST =T7'T =idy

and
(ST) - (T7'S™ Y = S(ITTHS ' =85 =idy.

(ii) Assume that ST is invertible. Then S is surjective, because: any v € V can be
written as

v = (ST)(ST) }(v) = S(T(ST)’%) € range(S).
Also, T is injective, because: if T'(v) = 0, then

v=(ST) 1 (ST)(v) = (ST)"'S(0) = 0. O

Note that even if V' is infinite-dimensional and ST is invertible, the fact that T is
injective means that 1" defines an isomorphism

T :V — range(T).
It follows by (i) that
Srange(r) = (ST) - T :range(T) — V
is also invertible, and we can write
(ST)™" = T~ (Slrange(r)) -
In this sense, the formula for the inverse is still valid.

Example 31. Let V = P(R) with linear maps

Then ST'(p)(z) = p(x+1), so ST is invertible with inverse p(z) — p(x —1). The range
of T is
range(T) = {p € PR) : p(—1) =0} =T,

and the inverse of ST is the composition of

(Slo)™:V — U, (Slo)" (p)(x) = / Cp(t)dt

and
70U — V, T p)(x) = p'(z = 1).

Notice that TS is not invertible because it sends all constants to 0.
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Here is a useful corollary:

Proposition 30 (LADR 3.D.10). Let V be a finite-dimensional vector space and
let S,T € L(V) be operators. Then ST = I if and only if TS = I.

Proof. Assume that ST = idy. Then T is injective and S is surjective by the previous
proposition. By LADR 3.69, S and T are isomorphisms, and

S=8(TT")=(ST) T =T7",

soTS=TT"1'=1.
The other direction is the same proof, with the roles of S and T" swapped. O]

Example 32. This is also false for infinite-dimensional spaces. The operators

S.T € LP(R)), S(p) =7, T(p)(x):= / “p(t) dt

satisfy ST = id but not T'S = id.
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Product and quotient space - 6/30

Product

Recall that the Cartesian product of two sets A and B is the set of ordered pairs
Ax B={(a,b): a€ A, be B},

more generally, if Ay, ..., A, are sets, their product is the set of lists

HAl = Al X ... X Am = {(al, ...,am) Doa; € Az}
=1

Proposition 31 (LADR 3.73). Let Vi, ..., V,,, be vector spaces. Then their product
Vix..xV,
1s a vector space with the componentwise operations
(V1 ooy U ) + (W1, ooy W) i= (V1 + W1, ey Uy + Wiy), U, w; €V

and

A (U1, ey U) 1= (AU, oy AV).

Proof. All of the axioms are straightforward to verify. The zero element is 0 = (0, ..., 0),
and the additive inverse of (v, ...,vm) 18 (=01, ..., —Up). O

Example 33. R" is the product R x ... x R.
———

n times

Example 34. There is a natural identification
R™ x R® 5 R™™" ((ml, ey T, (Y1, ...,yn)) = (T ooy Tony Y1y ey Yn) -

In general, even though V; x (V4 x V3) and (V; x V4) x V3 and V; x V4 x V3 are
technically not the same spaces, there are natural ways to identify them with each
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other and mathematicians often do not bother distinguishing these spaces. The same
is true for V- x W and W x V.
Let Vi,...,V,, be vector spaces. Each Vj is isomorphic to the subspace

{0} x ... x {0} x V; x {0}... x {0} = {(0,...,0,v%.0,...,0) : v@ € V;} S Vs x ... x V,
via the obvious map
Vi — {0} x ... x {0} x V; x {0}... x {0}, @ (0,...,0,09,0,...,0).

We will abbreviate {0} x ... x {0} x V; x {0} x ... x {0} by V).

Proposition 32. Let Vi, ..., V,, be vector spaces. Then Vi x ... x V,,, is a direct
sum of its subspaces V().

For this reason, the product is also called the exterior direct sum. In fact, when
V and W are unrelated vector spaces (not subspaces of an ambient vector space), the
notation V & W is used equivalently to V' x W - although we will avoid using “@®” that
way in this course.

Proof. Every v = (v(l), s U(M)) € Vi x ... x V,, can be written in exactly one way as a
sum
v = (U(l)’o,,0)++<0770,v(m)) 0

Proposition 33 (LAD+ 3.76). Let Vi, ..., V,, be finite-dimensional vector spaces.
Then Vi x ... x V,,, is finite-dimensional, and

dim(Vy x ... x V,,) = dim(V;) + ... + dim(V},,).

The dimension of the product is not the product of the dimensions! There is another
construction, called the tensor product, whose dimension is actually the product of the
dimensions of each space. We will not discuss this here, but you have already seen one
example of it: the space of linear maps £(V, W), which has dimension dim(V')-dim(W).

Proof. This follows from the formula for the dimension of a direct sum:

dim(Vi ... x Vi) = dim(Vigy @ ... & Vi)
= dim(V(yy) + ... + dim(V{m))
=dim(V1) + ... + dim(V},). O
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Here is the relationship between sums and products:

Proposition 34 (LADR 3.77). Let Uy, ...,U,, CV be subspaces of a vector space
V. Then there is a surjective linear map

LUy X oo x Uy — Ui+ .o+ Upy T(ur, ey ty) = U1 + oo+ Uy,

and it is injective if and only if Uy, ..., Uy, form a direct sum.

Proof. T is surjective by definition of the sum U; + ... + U,,. It is injective if and only
if the only way to write
0=wu; + ... +u, with u; € U;

is when u; = 0 for all 7. This is equivalent to Uy, ..., U,, forming a direct sum. O]

This gives us a very clean proof of problem 8 on the first problem set: since I' is
surjective, we know that

dim(U; + ... + U,,) = dimrange(I') < dim(U; X ... x Uy,) = dim(Uy) + ... + dim(U,,),
since the rank-nullity theorem implies that
dimrange(I") = dim(U; X ... x Uy,) — dim null(T").

We also see that those expressions are equal if and only if dim null(I") = 0; or equiva-
lently, if I' is injective; or equivalently, if Uy, ..., U,, form a direct sum.

Affine subsets

Definition 22 (LADR 3.79, 3.81). Let V' be a vector space. A subset A CV is
called affine if it can be written in the form

A=v+U={v+u: ueU}

for some vector v € V and subspace U C V.

Example 35. In R?, the line £ = {(x,y) : * +y = 1} is an affine subset. It has the
form

¢=(1,0) + Span((—1,1)).

Definition 23 (LADR 3.81). Let U C V be a vector space. An affine subset
A CV is parallel to U if it has the form A = v + U for some v € V.
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More generally, two affine subsets are called parallel if they are parallel to the same
subspace of V.

Example 36. In calculus, taking indefinite integrals results in expressions of the form
2 L 3
x*dr = 3% +C.

The algebraic point of view is that [2?dz is an affine subset of the space of polyno-
mials (or whatever function space we are working with) that is parallel to the space of
constants R :

1
/xde:§x3+R.

Proposition 35 (LADR 3.E.7). An affine subset A C 'V is parallel to only one
subspace of V.

Proof. Assume that A = v+ U = x + W with v,z € V and subspaces U,/W C V. In
problem 8 on the current problem set, we will show that U = W. O

Proposition 36 (LADR 3.85). Let U C V be a subspace and v,w € V. The
following are equivalent:

(i) v—w e U;

(it) v+ U =w+ U;

(iii) (v+U)N(w+U) # 0.

Proof. (i) = (ii): Let u € U be arbitrary; then

vtu=w+ (v—w)+uecw+U.
U
€

Therefore, v + U C w + U. The same argument shows that w + U C v+ U.
(ii) = (ili): Since 0 € U, it follows that v = v + 0 € w + U and therefore
vew+U)N(w+U).
(iii) = (i): Choose uy,us € U such that
v+ =wtu € (v+U)N(w+U).

Then v —w = ug — uqy € U. O
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Definition 24. Let U C V be a subspace of a vector space V. The quotient
space V/U is the set of all affine subsets of V' that are parallel to U.

The vector space operations are defined by
(w+U)+(w+U):=w+w)+U and X (v+U) := (\v) + U.

It is not immediately clear that these definitions are valid, because we aren’t allowed
to extract the vector v from the affine subset v + U. We need to check that this is
well-defined: that

ifvy +U =wvy+Uandw; + U = wy + U, then (v; +wy) + U = (vg + we) + U,

and similarly for scalar multiplication.

Proof. If vy + U = vy 4+ U and wy + U = ws + U, then v; — vy, w; — wo € U. Therefore,
(v1 +wy) — (V2 + wa) = (v1 — va) + (w1 —we) €T,

so (vy +wy) + U = (vg + wy) + U.
Similarly, if v; + U = vy + U, then for any A € F,

)\Ul—)\’UQZA'(Ul—’Ug)EU,

SO A\vy + U = Ay + U. O

It is common to think of elements of V/U simply as elements of V', but with a
different definition of “=": we can no longer distinguish elements that differ by U. For
example, if U = Span((0,1)) € R? then taking the quotient R?/U means intuitively
that we are not allowed to look at the y-component, so the vectors (1,2) and (1,4)
become “equal”.
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Quotient space II - 7/5

Quotient space cont.

Recall that the quotient space V/U is the set of affine subsets v + U parallel to U.
Intuitively, it is just the set V with a more inclusive definition of “=": two vectors
v,w € V are considered the same in V/U if they differ only by an element v —w € U.

Definition 25 (LADR 3.88). Let U C V be a subspace. The quotient map is
the surjective linear map

7:V—V/U, 7(v):=v+U.

The null space of 7 is U, because

venull(r) & 7(v)=v4+U=0+U & v=v—-0€U.

Proposition 37 (LADR 3.89). Let V' be finite-dimensional and let U C'V be a
subspace. Then
dim(V/U) = dim(V) — dim(U).

Proof. The canonical projection 7 : V' — V/U is a surjective map with null space U.
By the rank-nullity theorem,

dim(V) = dimnull(7) + dim range(7) = dim(U) + dim(V/U). O

When V is infinite-dimensional, it is harder to know what dim(V/U) is - it can be
either finite- or infinite-dimensional.

The following theorem is a cleaner way to formulate the rank-nullity theorem. It is
also called the first isomorphism theorem. There are analogous statements in many
other areas of algebra.

Proposition 38 (LADR 3.91). Let T € L(V,W) be a linear map. Then there is
a natural isomorphism T : V/uull(T) — range(T) such that T =T o .
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In other words, T fits into the commutative diagram

]

V/ull(T') ---- I range(7T)

where ¢ : range(7") — W is the inclusion ¢(w) = w.

Proof. Define T by T(v + null(T)) := T(v). This is well-defined, because: if
v+ null(7) = w+ null(T"), then v —w € null(T"), so T'(v) — T'(w) =T (v —w) =0. It is
clear that T is also linear.

It is injective, because: assume that T'(v + null(7)) = 0. Then T(v) = 0, so
v € null(7T"), and v 4+ null(7") = 0 + null(7) is the zero element of V/null(T).

It is surjective: any element w = T(v) € range(7) also has the form

w = T(v+null(T)). O

We immediately recover the classical rank-nullity theorem when V' is finite-dimensional:
dim(V) — dimnull(7") = dim(V/null(7")) = dim range(7").

Of course, this is a circular proof, since we used the rank-nullity theorem to calculate
the dimension of the quotient V/null(7T") in the first place.

Example 37. The differentiation operator 7" : P(R) — P(R) is surjective, and its null
space is the space of constants, R. The induced isomorphism is the map

T:PR)/R— PR), (p+R)—p,
and its inverse is the indefinite integral

——1 .

T P[R) — P(R)/R, pl—>/p(x)dx.

Remark: You can think of injective maps and subspaces in the same way: any
subspace U C V' comes with its inclusion ¢ : U — V, v — v, and any injective map
i: U — V lets you identify U with the subspace i(U) C V.

In the same manner, you can think of surjective maps and quotient spaces in the same
way. Any quotient space V/U comes with its quotient map 7 : V' — V/U, and any
surjective map T : V' — W lets you identify W with the quotient space V/null(T).
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Proposition 39. If T : V. — W s a linear map and Uy C V, Uy C W are
subspaces such that T(Uy) C Us, then T induces a linear map

T : V/U1 — W/UQ, T('U -+ Ul) = T(’U) + UQ.

LADR 3.91 is the special case that U; = null(T) and Uy = {0}, since W/{0} = W.

Proof. It is clear that T will be linear. We need to verify that it is well-defined. Assume
that
v+ U; =w+ U; for somev,w € V;

then v —w € Uy, so T'(v) — T'(w) = T(v — w) € Us, and
The “dimension formula” relating the dimension of an intersection and of a sum

of subspaces is also a special case of a more general statement about quotient spaces,
called the second isomorphism theorem:

Proposition 40. Let U, W C V' be subspaces of a vector space V. Then there is
a natural 1somorphism

0 U/(UNW) — (U + W)/W.

When V is finite-dimensional, we recover the formula
dim(U)—dim(UNW) = dim(U/(UNW)) = dim((U+W) /W) = dim(U+W) —dim(W).

Before proving this, let’s make the statement a little clearer. Students are often
not sure whether calling an isomorphism ‘“natural” is just an opinion, or a precise
mathematical concept.

Short answer: it’s natural because you don’t have to choose a basis.

Long(er) answer: Saying that two spaces are naturally isomorphic is more than just
knowing that they have the same dimension. A natural isomorphism is a method of
constructing an isomorphism that works for every vector space at the same time - here,
it should be something like a function

{pairs of subspaces} — {isomorphisms}, (U, W) — ¢.

Since the domain here is not “pairs of vector spaces together with bases”, we know in
particular that we shouldn’t be accessing a basis when we define the isomorphism ¢.

It is not so easy to motivate why looking at natural isomorphisms is important when
our examples are mostly spaces like F" and P,(R) that are relatively easy to handle.
But when your vector spaces are more complicated, say

L‘(L’(L(]FOO, F>), £(F*, ), IF) ,
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you become grateful for the linear maps you can find without having to understand
what the vectors look like.

Proof. Define a linear map
T:U— (U+W)/W, T(u):=u+W.

This is surjective, because: for any u € U and w € W, the affine space u + w + W is
also represented by
utw+W=u+W=T(u)

(since (u+ w) —u =w € W). The null space is U N W, because:
Tuw)=u+W=04+W © u=u—-0€W & ueUNW.
The first isomorphism theorem implies that
=T :U/UNW)— (U+W)/W, ou+UNW)):=u+W

is a well-defined isomorphism. O]

Finally, the third isomorphism theorem is a statement about quotients of quo-
tient spaces. Assume that W C U C V is a chain of subspaces. We can think of U/W
as the subspace of V//W consisting of those affine spaces u + W with u € U.

Proposition 41. There is a natural isomorphism

o: (V/W)/(U/W) —= V/U.

This does not lead to any insightful formula when V' is finite-dimensional: but we
can verify that

dim((V/W)/(U/W)) = dim(V/W) — dim(U/W)
= (dim(V) = dim(W)) — (dim(U) — dim(W))
— dim(V) — dim(0),

as it should be.
Proof. Since the identity I : V' — V sends W into U, it induces a linear map

T:V/IW —V/U, v+ W —v+U.

It is surjective: every element of V/U has the form v + U = T'(v + W) for some v € V.
The null space of T is U/W, because:

Tw+W)=v4+U=04+U © velU & v+ W eU/W.
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The first isomorphism theorem implies that
o =T : (V/W)/({U/W) —s V/U, go((v FW) + U/W) =v+U

is an isomorphism. O

The third isomorphism theorem can be useful for certain proofs by induction, since
V/W generally has a smaller dimension than V.
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Dual space - 7/11

Dual space

Definition 26 (LADR 3.92, 3.94). Let V' be a vector space. The dual space of
Vs

V' = L(V,F) = {linearmaps ¢ : V — F}.
There are many names for elements of V’: depending on the application, they
are called linear functionals, or linear forms, or one-forms, or covectors.

Remarks: Despite the notation, this has nothing to do with the derivative. If it
isn’t already clear from the context, it should be clear from the capitalization of the
letter which notation is meant.

The dual space is also often denoted V* - you will see this in other textbooks (in-
cluding the Wikipedia article on the dual space). Be careful, because we will use the
asterisk for a different concept later on.

The different names for elements of V' are similar to the different names for linear
functions / maps / transformations - there is no mathematical difference, but the word
choice does imply a particular way of thinking about the same object. “One-forms”
usually appear in geometry and topology; “linear functionals” usually appear in ad-
vanced calculus; etc.

When V is finite-dimensional, we know that V"’ is isomorphic to V' because
dim V' = dim(V) - dim(F) = dim(V) - 1 = dim(V).

However, this isomorphism is not natural. In fact, if V is infinite-dimensional, then V'
can never be isomorphic to V’ (although this is not so easy to prove). Any isomorphism

between finite-dimensional V' and V' must involve knowledge of what the elements of
V look like.

5

Definition 27 (LADR 3.96). Let V' be a finite-dimensional vector space with
ordered basis {vy, ..., v, }. The dual basis of V" is the list @1, ..., ¢, € V', defined
by

1: j=Fk

3(vk) = j’“:{o: S

o1



Example 38. Consider F" as the space of column vectors with the canonical basis

1 0

0 :

e = v bp = |
! : 0
0 1

The dual space (F")" = L(F™, ) is the space of (1 x n)-matrices (i.e. row vectors), and
the dual basis to {e, ..., e,} is the list of row vectors

e1=(10 .. 0),..,0,=(0 ... 0 1).

Proposition 42 (LADR 3.98). Let V' be a finite-dimensional vector space with
ordered basis {vy,...,v,}. Then the dual basis {1, ..., pn} is a basis of V'.

Proof. Since dim(V) = dim(V’) = n, it is enough to show that ¢, ..., @, is linearly
independent. Assume that

)\1901 + ...+ )\ngpn = (0 with )\17 ceey )\n eF.

Plugging in v; shows that

for every k. O]

The name “dual” space is appropriate because, although finite-dimensional spaces
V' are not naturally isomorphic to their dual V', they are naturally isomorphic to their
bidual space (dual of the dual space) V" = (V')". In the case of column vectors F”,
passing to the dual space is the same as taking the matrix transpose, and transposing
twice leaves us with the column vector we started with. The identification V = V" is
an abstraction of that idea.

Proposition 43 (LADR 3.F.34). Let V' be a finite-dimensional vector space.
Then there is a natural i.somorphism

J:V—=V" j@)(e) =), veV, eV’

When V is infinite-dimensional, j is only an injective map.
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Proof. Since dim(V) = dim(V’) = dim(V"”), it is enough to show that j is injective.
Let v # 0 be any nonzero vector; then v can be extended to a basis {v = vy, vq, ..., v, }
of V. Let {1, ..., o} be the dual basis; then ¢, is a linear form such that ¢;(v) # 0,
and therefore

3(0) (1) = p1(v) # 0;
i.e. j(v) # 0. Since v was arbitrary, null(j) = {0}. O

Dual map

Definition 28. Let T': V — W be a linear map. The dual map is

T - W — V' T'(p):=poT.

Example 39. Let 7' : P(R) — P(R) be the map that multiplies by x, and define the
linear form

¢ :PR) =R, o(p):=p(2).
Then
T'(¢)(p) = ¢(T(p)) = p(x - p) = 2 p(2);

i.e. T'(p) = 2y is the linear form p — 2p(2).

Proposition 44 (LADR 3.101). Let U,V,W be vector spaces. The dual defines
a linear map

YLV, W) — LV, V), T T
It also reverses products: for any T € L(U,V) and S € L(V,W),

(STY =T'S'.

Here is a “fun” thought experiment: since ' : L(V, W) — L(W’ V') is itself a linear
map, we can take its dual. What exactly does its dual map

‘Y. LW VY — L(V,W)

do?
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Proof. (i) Let Ty,Ty, € L(V,W) be linear maps and let A € F be a scalar. For any
peW andv eV,

(0T + BY () @) = (9o (ATa + ) ) (v)
— (M) + Ta(v))
= Ap(Th(v)) + p(T2(v))
( +T290>( );

SO ()\Tl + Tg)/ = )\Tll + TQ/
(ii) For any ¢ € W/,

(8T)p=¢o(ST) =(poS)oT = (S'p) o T =T'(Sy),

0 (STY =T 08 m

Proposition 45 (LADR 3.114). Let T : V. — W be a linear map between finite-
dimensional vector spaces. Let B and C be ordered bases of V resp. W, and let
B' and C' be the dual bases of V' and W'. Then

ME(T') = (M?(T))T.

Here, if A = (a;;);; is any matrix, AT = (a;;);; denotes the transpose.

Proof. Write ME(T) = (a;;);; i-e. if
B ={vy,...,u,} and C = {wy, ..., wp, },
then T'(v;) = >, a;;w;. Denote the dual bases by
B={v,...,v,} and C" = {w), ..., w }.
Then

T'(w}) (vk) = wiT (vg) = wj ( Z alkwl> = @ = Z a;;V;(Vk),
=1 i=1

so T'(wj) and Y7 | ajv; agree on the basis {vy, ..., v, }; therefore, T"(w}) = Y71, ajv;.
[l
1 2

Example 40. Consider the matrix A = ( 15

2) : R? — R%. The dual map is

A (R — (R, (2 y) = (z y) (111 : 2)
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and with respect to the standard bases {(1,0),(0,1)} and {(1,0,0),(0,1,0),(0,0,1)},
this is represented by

1
2
3

S O

Using this point of view and the fact that (ST) = T"S’ for any linear maps S, T, it
follows that (AB)T = BT AT for any matrices A, B.

Annihilator

Definition 29. Let U C V be a subspace. The annihilator of U is

U:={peV': p(u)=0foralluecU}.

Example 41. The annihilator of the subspace

1 0
UzSpan( 11,11 >§Q3
0 1

is UV := Span((—l, 1, —1)).

Proposition 46 (LADR 3.107, 3.109). Let T': V. — W be a linear map. Then:
(i) null(T") = (range(T));
(ii) range(T") = (null(T))°.

Proof. (i) Let ¢ € null(T”); then, for any w = T'(v) € range(7),

p(w) = (T(v)) = T'(p)(v) = 0(v) = 0,

so ¢ € (range(T))°.

On the other hand, let ¢ € (range(T))?; then, for any v € V,

so T'(¢) = 0 and ¢ € null(7”).
(ii) Let ¢ = T"(¢)) € range(7"). Then, for any v € null(T),

p(v) =T'(¥)(v) = $(Tv) = $(0) = 0;
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therefore, ¢ € null(T')°.
On the other hand, let ¢ € null(T")°, and define
¢ :range(T) — F, ¢(T(v)) := ¢(v).
This is well-defined, because: if T'(v) = T'(w), then T'(v — w) = 0, so v — w € null(7T)

and ¢(v — w) = 0. By extending a basis of range(7) to a basis of W, and extending ¢
by 0, we can find a linear form ¢ € W’ such that 1|;ange(r) = %. Then

T'W}p)=poT=9oT =,

so ¢ € range(T"). O

Proposition 47 (LADR 3.108, 3.110). Let T : V. — W be a linear map. Then:
(1) T is injective if and only if T is surjective;
(i1) T is surjective if and only if T is injective.

Proof. (i) T is injective if and only if null(7) = {0}, which is equivalent to
range(7”) = null(T)° = V".

(ii) T is surjective if and only if range(7) = W, which is equivalent to
null(7”) = range(T)° = {0}. O
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Invariant subspaces - 7/12

Invariant subspaces

Definition 30 (LADR 5.2). Let T' € L(V') be an operator on a vector space. A
subspace U C V' is invariant under 7" if T(U) C U.

In particular, T' can be restricted to an operator T|y on U. It also induces the
quotient operator T'=T/U on V/U.

Example 42. The null space and range of T are invariant subspaces under T'; so are
{0} and V itself.

Example 43. The following matrices are considered as operators on R2.

(i) The matrix ((1) g) has invariant subspaces {0}, Span((é) ), Span(((l))) and R?.

(ii) The matrix ((1) _01) has only the invariant subspaces {0} and R2.

(iii) The matrix has only the invariant subspaces {0}, Span( ((1))) and R

0 1
0 0
We will discuss how to find the invariant subspaces later.

Eigenvectors (more precisely, their spans) are the smallest possible invariant sub-
spaces:

Definition 31 (LADR 5.5, 5.7). Let T' € £(V') be an operator on a vector space.
A nonzero vector v € V is an eigenvector of 7' if Span(v) is invariant under 7.

It follows that T'(v) = Av for a unique scalar A € F, called the eigenvalue associ-
ated to v.

Definition 32 (LADR 5.36). Let 7" € L(V) be an operator and A € F. The
eigenspace of T' for \ is

E\T)=null(T — \) = {0} U {eigenvectors of T' with eigenvalue \}.

It is clear that E'(A, T') is an invariant subspace of T if v € E(\, T'), then T'(v) = Av € E(A, T).
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Proposition 48 (LADR 5.21). Let T € L(V) be an operator on a finite-
dimensional complex vector space. Then T' has an eigenvector.

Both assumptions here are necessary:

(i) The operator (O

1 0
grees, has no eigenvectors;

(ii) The operator T': P(C) — P(C), p — x - p has no eigenvectors, because T'(p) never
even has the same degree as p for nonzero p.

This theorem is more of a result in calculus, rather than a theorem of linear algebra,
since it depends fundamentally on properties of C (or R). The (relatively short) proof
below is adapted from the article [S]. You will probably want to skip it.

) on R?, which acts as counterclockwise rotation by 90 de-

[S] Singh, D. The Spectrum in a Banach Algebra. The American Mathematical
Monthly, vol. 113, no. 8, pp. 756-758.

Proof. Assume that T has no eigenvalues; then (T — \I)~! exists for all A € C. (In
particular, 7" itself is invertible.) Choose a linear functional ¢ € L(V') such that
@©(T~1) # 0; then ¢ is differentiable, because it is linear. Consider the function

F(r) = /0 " o(T = e 1Y) dd, 1 € [0, 00).

Then

irF'(r / irp((T — re®)~2)e? do

0

/ T — rei)~ ))de
o((

2’”1) Y = (T = re¥ 1)) = 0.

Here we are using the chain rule:

%@((T—rewl)_l) = (T —re®I)72).€?, %@((T—Tew])_l) = (T —re®I)~2)ire™.

It follows that F'(r) = 0 everywhere, so F'(r) is constant in 7. On the other hand,
as r — oo becomes large, (T — re®I)™ ~ (—reI)™' = —1¢™*] tends to 0 (uniformly
in 0, since e~ is bounded), so its integral F'(r) tends to 0; it follows that

0= lim F(r) = F(0) = 2mpo(T™);

T—00

contradiction. ]
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Proposition 49 (LADR 5.10). Let T € L(V), and let vy, ..., v, € V be eigenvec-
tors for distinct eigenvalues Ay, ..., Ay. Then {vy, ..., v} is linearly independent.

Proof. Assume that T is linearly dependent, and let k£ be the smallest index such that
vk € Span(vy, ..., vg_1). Write

Vp = Q101 + ... + ap_1U,_1 with a; € F.
Then
Mo = Tvg) = T(awl + ..+ ak_lvk_1> = A0 + ... + AN 1Qp_1Vk_1-
On the other hand,
AU, = \j - (alvl + ...+ ak_lvk_1> = \p@1V1 + ... + ApQp_1Vk_1.
Subtracting these equations gives us
0=\ — Ap)arvr + ... + (Mk—1 — Ap)@r—1Vk—1;

here, {vi,...,u5_1} is linearly independent since k was chosen minimally, and
(A — M), oy (Ag—1 — Ag) are all nonzero, so

ay = ... =0ag—1 = 0.
This is a contradiction, because it implies that

Vp = a1U1 + ... + ap_1vp—1 = 0vy + ... + Ovg_qy = 0. ]

Example 44. For any N € N, the functions sin(z), sin(2z), ...,sin(Nz) are linearly
independent elements of

V ={f:R— R: fisdifferentiable infinitely often},

because they are eigenvectors of the double-differentiation operator 7' : V- — V, T'(f) := f”
for the distinct eigenvalues —1, —4, ..., —N2.

The following is an immediate corollary:

Proposition 50 (LADR 5.13). Let T € L(V) be an operator on a finite-
dimensional vector space. Then T has at most dim(V') distinct eigenvalues.
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Proof. Let vy, ..., v, be eigenvectors for distinct eigenvalues Ay, ..., Ap,. Then {vy, ..., v, }
is linearly independent, so m < dim(V/). O

Remark for students interested in that sort of thing: this statement also holds for
infinite-dimensional vector spaces. For instance, the shift operator

T :R*® — R*, (ay,as,as,...) — (az,as,ay, ...)
has every real number \ as an eigenvalue, corresponding to the eigenvector (1, A, A, A3, ...).

This forces dim(R>°) to be at least the cardinality of R.

Finally, let’s recall how to find eigenvalues and eigenvectors in practice:

Proposition 51. Let T' € L(V) be an operator on a finite-dimensional vector
space, and let vy, ...,v, be an ordered basis of V.. Then X\ € F is an eigenvalue
of T if and only if it is an eigenvalue of the matrix M(T), and v € V is an
eigenvector of T for X\ if and only if its coordinates M(v) are an eigenvector of

M(T) for A.

Proof. The equation T'(v) = Av is equivalent to the equation

M(T)M(v) = M(Tv) = M(Mv) = AM(v). O

The eigenvalues of a square matrix are found by computing the characteristic poly-
nomial and finding its zeros. We will give a basis-free definition of the characteristic
polynomial later - but for a square matrix A, it is the determinant det(t/ — A).

Example 45. Consider the operator

L 2,2 2,2 a b a c
T:C>* — C*7, (C d)H(b d)

‘ ‘ , 10 01 00 00
(i.e. the transpose). With respect to the basis {(0 0) ; (0 0) ’ (1 ()) ’ (() 1)}’

it is represented by

1 000
A= 101 00
0001
The eigenvalues are the roots of
A—1 0 O 0
det| 0 A L0 =A=1PA\+1),

0o -1 A 0
0 0 0 Xx-1
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so they are 1 and —1. To find bases of the corresponding eigenspaces, we look at

0 0 0 0 1 0 0
0 -1 1 0 0 1 0
null(A — I) = null 0 1 -1 0l7 Span( ol 11l 1o >
0O 0 0 O 0 0 1
and
2 000 0
0110 1
null(A + I) = null 011 0l7 Span< 1 >
00 0 2 0

These are coordinates for the following eigenvectors of T":

(00) (1 0) (0 9)- (5 o)

J/

Vv Vv
eigenvalue 1 eigenvalue —1
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Diagonalizability - 7/13

Upper-triangular matrices

Definition 33. A square matrix A = (a;;); ; is upper-triangular if a;; = 0 for
all pairs (4, 7) with ¢ > j.

The diagonal of A is the entries a1, ..., a,,. A is a diagonal matrix if all entries
that are not on the diagonal are 0.

1 2 3 4
.10 5 6 7]. . o .
Example 46. The matrix 0038 9l upper-triangular; its diagonal is 1, 5, 8, 10.
0 0 0 10

Proposition 52 (LADR 5.26). Let T € L(V) be an operator on a finite-
dimensional space, and let {vy,...,v,} be an ordered basis of V. The following are
equivalent:

(1) The matriz of T with respect to {vy, ...,v,} is upper-triangular;

(ii) T(vj) € Span(vy, ..., v;) for each j;

(iii) Span(vy, ..., v;) is invariant under T for each j.

Proof. (i) = (ii): Let (a;;);; be the matrix of 7. Then
T(v;) = a1ju1 + ... + GyjUn = @101 + ... + @j;9; + 0vja + ... + Ov,, € Span(vy, ..., v;).
(ii) = (iii): Assuming (ii), we see that
T(v;) € Span(vy, ...,v;) € Span(vy, ..., v;)
for all ¢ < j; so T'(Span(vy, ..., v;)) C Span(vy, ..., v;).
(iii) = (i): Write T'(v;) = a1jv1 + ... + an v, for each j. Since T'(v;) € Span(vy, ..., v;),

it follows that a;1;, ..., an; = 0; in other words, a;; = 0 whenever ¢ > j, so the matrix
(a;j);; is upper-triangular. O
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Proposition 53 (LADR 5.30, 5.32). Let T' € L(V) be an operator on a finite-
dimensional space, and assume that T s represented by an upper-triangular ma-
trixz with respect to some basis of V.. Then the eigenvalues of T" are exactly the
entries on the diagonal of that matriz.

Proof. Assume that T is represented by the matrix

)\1 * *
0 0 M\,

then, for any A € F, the matrix of T"— A\ is

)\1 - A * *
0 0 An—A
By induction on n, we prove that this is invertible if and only if all A # Ay for all k:
(i) When n = 1, this is obvious.
(ii) In general, assume first that A\ # \,. Then the equation
Al — A % * o 0
0 * 1= 1:
0 0 A—2A Un 0

implies (A, — A\)v, = 0 in the lowest row, and therefore v,, = 0. The first (n — 1) rows
give us the equation

/\1 - A * * (1 0
0 * : : =1:
0 0 )\n—l - A Un—1 0

By the induction assumption, this matrix is injective if and only if A # \; for all
1<k<n-1.
On the other hand, if A = \,, then the matrix

)\1—)\ * *
M(T — \I) = 0 ok
0 0 O

has its range contained in the proper subspace Span(ey, ..., e,_1), so it is not surjective.
]
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Example 47. The derivative T": P3(R) — P5(R) is represented by the matrix

o O OO
o O O
S O N O
S W o O

so its only eigenvalue is 0.

Proposition 54 (LADR 5.27). Let V be a finite-dimensional complex vector
space and T € L(V). Then T has an upper-triangular matriz with respect to
some basis of V.

Proof. Induction on dim(V'). This is clear when dim(V') = 1.

In general, fix an eigenvector v € V' and eigenvalue A, and define U := range(T — \I).
Then U is an invariant subspace of V' with dim(U) < dim(V'). By the induction as-
sumption, there is a basis {u1, ..., un, } of U such that T'|y is represented by an upper-
triangular matrix. Extend this to a basis {u1, ..., um, v1, ..., v, } of V; then

Tvy = (T — M)vg +Avg € Span(uy, ..., U, V1, ..., vg) for all &,
————

so the matrix of T with respect to that basis is upper-triangular. O]

Diagonalizable maps

Definition 34 (LADR 5.39). Let T" € L(V) be an operator on a finite-
dimensional vector space. T is diagonalizable if there is a basis of V, with
respect to which T' is represented by a diagonal matrix.

Proposition 55 (LADR 5.41). Let T € L(V) be an operator on a finite-
dimensional vector space. The following are equivalent:

(i) T is diagonalizable;

(ii) There is a basis of V' consisting of eigenvectors of T';

(iii)) V = @, E(\;,T) is a direct sum of eigenspaces of T';

(iv) dim(V) = > dim E(\;, T).

The dimension dim E(\, T') = dimnull(7"— AI) is called the geometric multiplic-
ity of A as an eigenvalue of 7. It is 0 whenever A is not an eigenvalue.
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Proof. (i) = (ii): Let {v1, ..., v,} be a basis of V' with respect to which 7" is represented

A ... O
by the diagonal matrix | o .. o |. Then T(v;) = \w; for all i, so {vq,...,v,} is a
0 ... A\,

basis consisting of eigenvectors of 7.
(ii) = (iii): The spaces E(\;,T), where \; are distinct, always form a direct sum: if
there were a nonzero element

0#v; € EOy, T) N (EOwT) + ..+ By, T)),

then v; = v1 +...+v;_1 would be a sum of eigenvectors for distinct, different eigenvalues
(where some v; may be zero and not appear in the sum). This is a contradiction, because
eigenvectors to distinct eigenvalues are linearly independent.

The assumption (ii) implies that E(Ay,v) @ +...+ E(\y,, T) is all of V| since it contains
the basis of eigenvectors (vy, ..., vy,).

(iii) = (iv): This is the formula for the dimension of a direct sum.

(iv) = (i): Induction on m.

(1) When m = 1, i.e. dim(V') = dim E(\,T), it follows that V = E(A,T),s0 T = A\ I
has a diagonal matrix with respect to every basis of V.

(2) The restrictions of T to the invariant subspaces U = E(\,T) + ... + E(A\_1,7T)
and W = E(\,,T) are diagonalizable (by the induction assumption). Let {vq, ..., v}
be a basis of U and let {wy, ..., wi} be a basis of W, with respect to which 7’|y and T'|w
are represented by diagonal matrices. Since U N W = {0} (by linear independence of
eigenvectors for distinct eigenvalues), {vy, ..., U, w1, ..., wy } is a basis of V', with respect

to which ./\/l(T| ) 0
m) = (M )

is diagonal. O]

Example 48. Unless dim(V) = 0 or 1, there are always operators that are not diago-
nalizable. For example, let {vy,...,v,} be a basis of V' and define

T e E(V), T(Ul) =0, T(’Uk;) = Vk—1 (/{5 > 2)

Then T is represented by the matrix

0 1 0 0
0 0 1 0
0 0 0 .. 1
0O 0 0 .. O

This is upper-triangular with only 0 on the diagonal, so 0 is the only eigenvalue. How-
ever, the null space of T' is one-dimensional, spanned by v;; so

n=dim(V)# > dimE(\T) = 1.
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The following theorem shows that “most” operators are diagonalizable:

Proposition 56 (LADR 5.44). Let T € L(V) be an operator on a finite-
dimensional space that has n = dim (V') distinct eigenvalues. Then T is diag-
onalizable.

Proof. Choose eigenvectors wvq,...,v, for the distinct eigenvalues \q,...,\,; then
{v1,...,v,} is linearly independent. Since n = dim(V'), we know that {vy,...,v,} is
a basis of V. H

Example 49. Diagonalizability of a matrix depends on the field that matrix is defined

over. For example, the matrix has distinct eigenvalues 2 & v/5, so it is diago-

1 2
2 3
nalizable as an operator on R?; but if we interpret it as an operator on Q?, then it has
no eigenvalues at all and is not diagonalizable.

0 —
1 0
values +¢; but it is not diagonalizable over R.

Similarly, the matrix is diagonalizable over C because it has distinct eigen-
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Minimal polynomial - 7/14

Minimal polynomial

Definition 35 (LADR 5.17). Let T' € L(V') be an operator and let p € P(F) be
a polynomial. If p(z) = a,2™ + a,_12" ! + ... + ag, we define

p(T) == anT" + a1 T" 7 + ... + a1 T + aol.

When V is finite-dimensional, we know that £(V, V) is also finite-dimensional with
dim £(V, V) = dim(V)2. In particular, the list {I,T, T2 T3, ...} will eventually become
linearly dependent.

Definition 36 (LADR 843). Let 7' € L(V) be an operator on a
finite-dimensional space, and let k£ be the smallest index such that
T* € Span(I,T,T?,...,T*1). Write

TF = ap 1 T+ @ 2T 2 + .+ a T + aol.
The minimal polynomial of 7" is

p(x) == zF — ap_12F — ... — ay.

Example 50. (i) The minimal polynomial of (é (1)) is x — 1.

(ii) Let T' = 2 1) as an operator on C2. It is clear that {7, T} is linearly independent;

1 2
P () ()

however, we find
so the minimal polynomial of T is 22 — 4z + 3.

By construction, the minimal polynomial p of T satisfies p(T") = 0. It is minimal in
the following sense:

67



Proposition 57 (LADR 8.46). Let T € L(V) be an operator on a finite-
dimensional space, and let ¢ € P(F) be a polynomial. Then q(T) = 0 if and
only if q is a polynomial multiple of the minimal polynomial p.

Proof. 1f ¢ = p-r is a multiple, then ¢(T') = p(T) - r(T) =0-r(T) = 0.
On the other hand, let ¢ € P(F) such that ¢(7") = 0. We perform polynomial division
with remainder: write

qg=p-r+s, where deg(s) < deg(p) or s = 0.
It follows that
0=g(T) = p(T) -r(T) + s(T) = s(T).

If d = deg(p) is the degree of p, then {I,T,...,T% '} is linearly independent (since
d is the smallest index with 7¢ € Span(/,...,7971).) The expression s(T) = 0 is a
linear combination of {I,T,...,T% '} to zero; it must be the trivial combination, so all
coefficients of s are 0. In other words, ¢ =p-r+ 0 = p-r is a multiple of p. O

One of the most important properties of the minimal polynomial is that we can read

off the eigenvalues of T" from its zeros. For example, the minimal polynomial of (? ;)

was 22 — 4z + 3 = (z — 3)(x — 1), so the eigenvalues of (% ;) are 3 and 1.

Proposition 58 (LADR 5.B.10, 8.49). Let T' € L(V') be an operator on a finite-
dimensional space with minimal polynomial p. Then the eigenvalues of T are
exactly the zeros of p.

Proof. Let A € F be any eigenvalue of T', with eigenvector v € V. Since Twv = \v, we
can compute

T?v = T(Tv) = T(\) = M, T3 = T(T*) = T(M\?v) = v, ...
and therefore, if p = 2™ + a,_ 12" + ... + ag,
0=p(T)v=T"v+ a1 T" W+ .. +afv=2"V+a,_1 X" 0+ .. +aw=pAo,
so p(A) = 0.

On the other hand, assume that A is a zero of p, and factor p(z) = ¢(x) - (x — A).
Then
0=p(T) = q(T) - (T = M)
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If X is not an eigenvalue of 7', then 7" — AI is invertible and therefore
0=q(T) (T = M) (T = M)~" =q(T).
This is impossible, because ¢ cannot be a multiple of p due to its lower degree. O
If dim(V) = n, then £(V) is n®-dimensional, so it may seem that the minimal
polynomial could have a very large degree (all the way to n?). This is not the case. The

following theorem has a short proof at the end of page 263 in [LADR], but it requires
quite a bit of background and is only valid when F = C. Here is a direct argument.

Proposition 59. Let T € L(V) be an operator on a finite-dimensional space
with minimal polynomial p. Then deg(p) < dim(V).

Proof. Induction on dim(V).  This is clear when dim(V) = 0 or 1, since
dim(V)? = dim(V) in those cases.
In general, let n = dim(V) and fix an arbitrary nonzero vector v € V. Since

{v,Tw,...,T™} is a collection of (n + 1) vectors, it must be linearly dependent; so
there is a polynomial g € P, (F) such that ¢(T))v = 0. The null space U := null ¢(T) is
an invariant subspace under 7', because: if ¢(T)v = 0, then ¢(7)Tv = T'q(T)v = 0.
Case 1: ¢(T) = 0. Then the minimal polynomial of T is a factor of ¢, so its degree is
at most deg(q) < n.

Case 2: ¢(T') # 0; then dim(U) < dim(V'). By the induction assumption, the minimal
polynomial 7 of the restriction 7’| has degree at most dim(U). In particular, we know

0=7r(T|y)u=r(T)u forall u € U.

Also, since U # 0, the space V/U has strictly smaller dimenision than V. By the
induction assumption, the minimal polynomial p of the quotient operator

T:V/U—V/U Tw+U):=Tw) +U
has degree less than dim(V/U). It follows that
PTw+U=pT)v+U)=0+U
for all v € V, so p(T)v € U for all v € V', and therefore
r(T)p(T)v € r(T)(U) = 0.

Therefore, the minimal polynomial of p is a factor of r - p, which has degree

deg(r - p) = deg(r) + deg(p) < dim(U) + dim(V/U) = dim(V). O

69



Example 51. The minimal polynomial can have degree anywhere between 1 and
dim(V). For example, the minimal polynomial of I is always = — 1, regardless of
dimension. On the other hand, the dimension of the operator

0 1 0 .. 0

0O 0 1 .. 0
T=1|.. ... . ... ..|lecc

0O 0 0 .. 1

0O 0 0 .. 0

is ": there is an obvious pattern in the powers T*, so we can calculate its minimal
polynomial directly.

Finally, knowing the minimal polynomial gives us a powerful test for diagonalizabil-
ity:

Proposition 60 (LADR 8.C.12). Let T € L(V) be an operator on a finite-
dimensional space with minimal polynomial p. Then T is diagonalizable if and
only if p = (x — \1)...(x — \) splits into distinct linear factors.

This is notable because, over C, we can test this condition without factoring p - in
particular, without ever finding the eigenvalues. From calculus, we know that p has
distinct roots if and only if it shares no roots in common with its derivative p’. (The
only thing that can go wrong over R is that the roots of p might not be real.)

Example 52. Let T € L£(V) be an operator on a finite-dimensional complex space,
such that 7" = [ for some number n. Then T™ — I = 0, so the minimal polynomial
of T is a factor of ™ — 1. Here, 2™ — 1 has no repeated roots because it has no roots
in common with its derivative nz"~! (which has no roots other than 0); therefore, T is
diagonalizable.

Even when the roots of p’ are not as obvious as the example above, it is easy to test
by hand whether p and p’ share common roots using the Euclidean algorithm (repeated
division with remainder).

Proof. (i) Assume that T is diagonalizable, and write V = E(A\,T) @ ... ® E(A\,, T).
Since (T'— N\;I) is 0 on E(\;,T), it follows that (T" — M\ 1) - ... - (T — A\, 1) is zero on

each E(\;,T) and therefore it is zero on all of V; so the minimal polynomial of T is
p(x) =(z— A1) oo s (= A\p).

(ii) On the other hand, assume that p splits into distinct linear factors. We use

induction on dim(V).

(1) When dim(V') = 0 or 1, every operator is diagonalizable.
(2) Assume that m > 1 (if p(z) = = — Ay, then T = A\ [ is diagonalizable). Using

division with remainder, we find polynomials ¢, s € P(F) with

(x—=A2) - voo s (2 — M) = q(x)(z — A1) + s(x), and deg(s) < deg(z — A\y) = 1.
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In particular, s is constant; it is nonzero, since s(A1) = (A; — Ag) - ... - (A1 — Ap) # 0.
For any v € V, consider the vector

1
w:=—(T—=XI) ... - (T — N\ D)v;
s
then (T'— M\ I)u=1p(T) =0, so u € E(\,T). Also,

v—u= %(sv — (T — XoI)..(T — )\m])v>
= —%q(T)(T —MI)v
= (T - /\1])( - éq(T)v) € range(T — A\ I).

So the decomposition v = u + (v — u) for arbitrary v shows that
V =null(T — M\ ) +range(T — A\ ).

This must be a direct sum, because the rank-nullity theorem implies that

dim (null(T — M) Nrange(T — )\1[)> = dimnull(T — A1) + dimrange(T — M T) — dim(V)

=0.

By induction, the restriction T]range(T_ A1) 1s diagonalizable (since its minimal poly-
nomial is a factor of p and dimrange(7 — A1) < dim(V)); since

V =null(T — M\ ) @ range(T — A\ 1),

it follows that V' also has a basis consisting of eigenvectors of 7. m
Example 53. Whenever T' € L(V) is diagonalizable and U C V' is an invariant sub-
space, the restriction T'|y € L(U) and quotient operator T' € L(V/U) are also diago-

nalizable because their minimal polynomials are factors of the minimal polynomial of
T.

71



Generalized eigenvectors - 7/18

Generalized eigenvectors

Definition 37 (LADR 8.9, 8.10). Let 7' € L£(V) be an operator on a finite-
dimensional vector space.
(i) The generalized eigenspace of T for A € F is

o0

anT) = nuu((T . AI)’“).

k=0

(ii) Nonzero vectors v € G(\;T) are called generalized eigenvectors of 7" for

A

\. J

In other words, v € V is a generalized eigenvector for \ if and only if (T'— A\ )*v = 0
for some k € N.

It is a little suspicious that we are defining the subspace G(A,T) as a union of null
spaces - remember that in general, unions are not subspaces at all. The reason that
G(A\,T) is a vector space will be the following lemma. It is phrased in terms of an
operator T': later, we will replace T by (T' — AI) so it will apply to G(\, T)).

Proposition 61 (LADR 8.2, 8.3). Let T' € L(V) be an operator. Then there is
a chain of increasing subspaces

{0} = null(7°) C null(7") € null(7?) C null(7%) C ...
If null(T™) = null(T™ ") for any m, then the chain stops at m:

null(7™) = null(7"*") = null(T™?) = null(T™?) = ...

Proof. (i) If T*v = 0 for some k, then T**'v = T(T*v) = T(0) = 0. This shows that
null(T*) C null(T**!) for every k.
(i) Assume that null(7™) = null(7™"). Let v € null(T™"**1) for some k > 0; then

Tm+1<Tk,U) _ Tm—l—k—l—lv _ O7
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so Thv € null(T™+1) = null(T™), so T*™v = T™(T*v) = 0. This proves the reverse
inclusion: null(T™*+1) C null(T™*%). O

Proposition 62 (LADR 8.4, 8.11). Let T € L(V) be an operator and let
n=dim(V). Then G\,T) = null((T" — X\I)™).

Proof. 1t is enough to prove that null(7™) = (J;—, null(7%); the claim for A other than
0 follows by replacing 7" by T' — AI.

Assume that null(7™) # null(7""!). By the previous proposition, the chain
0 C null(Th) € null(T?) € ... € null(T™H)

cannot have “=" anywhere: if null(T%) is ever null(TV*!), then null(7T*) stops growing
altogether after £ = N. It follows that

0 = dim(0) < dimnull(T") < dimnull(7?) < ... < dimnull(7"*") < dim(V) = n.

This is impossible, because it implies that dimnull(7%), ..., dim null(7"*!) are (n + 1)
distinct integers in {1,...,n}. O

Example 54. Consider the matrix

A

111
01 1| eQ®.
00 3

We will find the generalized eigenvectors corresponding to A = 1. Here,

011 1
null(A—7I)=null |0 0 1] = Span< 0 ),
00 2 0
and
00 3 1 0
null((A—1?*) =null [0 0 2| = Span( 0],(1 )
00 4 0 0
Finally, since
0 0 6 1 0
null((A—D* =null [0 0 4| = Span< 01,11 ),
00 8 0 0
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the chain of subspaces null((A — I)¥) has stopped growing and

0

,1).

G(1,A) = Span(
0

O O =

Another consequence of this line of reasoning is that there is no need to define
“generalized eigenvalues”; any generalized eigenvector of T" must correspond to a true
eigenvalue.

Proposition 63. Let T' € L(V) be an operator on a finite-dimensional vector
space. Then G(N\,T) # {0} if and only if X is an eigenvalue of T'.

Proof. 1f {0} = null(T" — AI), then the chain of subpaces
{0} C null(T — M) C null((T — MI)?) C ...
has already stopped at the beginning; i.e.
{0} = null(T — AI) = null((T — AI)?) = ... = null((T — AD)¥™Y) = G\, T).
In other words, we have shown that when A\ is not an eigenvalue of T, then

G(A,T) = {0}. O]

As with eigenvectors, generalized eigenvectors for distinct eigenvalues are linearly
independent:

Proposition 64 (LADR 8.13). Let T' € L(V) and let vy, ...,v,, be generalized
eigenvectors for distinct eigenvalues i, ..., \p,. Then {vy, ...,v,} is linearly inde-
pendent.

Proof. Assume not; let & be minimal such that {vy,..., v} is linearly dependent, and
fix a linear combination
avy + ... +apvr, =0

with a; # 0. Choose N to be the largest exponent with
w = (T — \eI) Ny #0.

Then (T — M)w = (T — MI)N 1o, = 0, so w is an eigenvector with eigenvalue ).
Therefore, (T'— M )w = (A\y — Mw for all A € F; in particular,

(T — AI)™w = (\p — A)™w.
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Fix n = dim(V). Applying (T — M )" - ... - (T — g1 D)™(T — M )N to a1vy + ... + apvp
gets rid of vy, ...,vx_1 (since these are generalized eigenvectors for Ay, ..., \y_1 and we
are left with

0= (T =MD" ... - (T = Xt )™(T — M) N agvp
= ak(T - )\1])11 © 500 © (T — )\k,ll)"w
= ar(A = A)" oo - (A = Mp_1)"w,

implying a; = 0; contradiction. O]

Over C, every operator is “diagonalizable” by generalized eigenvectors:

Proposition 65 (LADR 8.21, 8.23). Let V' be a finite-dimensional complez vector
space and T € L(V). Let Ay, ..., Ay, be the distinct eigenvalues of T. Then

m

V=e\ ).

i=1

In particular, there is a basis of V' consisting of generalized eigenvectors of T

Proof. Induction on n = dim(V'). This is clear when n = 1.
In general, fix an eigenvalue A\; of T. Then V' decomposes as

V =null(T — A\ )" +range(T — )" = G(\,T) @ U,

with U = range(T — A\ I)", because: by the rank-nullity theorem, it is enough
to verify that G(A,T) N range(T — A\ I)* = {0}. This is true, because: if
w = (T — M) € G(\,T), then (T — \I)"w = (T — M\ I)*v = 0, which
shows that v € G(A\;,T) and w = 0.

By induction, there is a basis of U consisting of generalized eigenvectors of the
restricted operator T'|y; i.e.

m

U=GMTlv) @ ... ® G, Tlv) = P G, Tl).

i=1

Here,
G()‘l?T|U) = G()\lv T) nU = {0}7

as we proved in the previous paragraph. If i # 1, then G(\;, T|y) = G(\;, T) because:
let v € G(\;, T) and write

v=v+u=0v+v+ ..+ Uy, withv; € G\, T), ue U, v; € GA\, T|v)-
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Since generalized eigenvectors for distinct eigenvalues are linearly independent, the
equation
v+ ..+ (w—v)+...+v,=0

implies that all v, k # i are 0; in particular, v; = 0 and v = u € U. Therefore,

V=GT)oU =G, T)® (GOs, T) @ .. © GO, T)). 0

Definition 38. The dimension dim G(\, T') is called the algebraic multiplicity
Haig(A) of A as an eigenvalue of 7.

Compare this to the geometric multiplicity pge,(A) = dim E(A, 7). We see that
Lgeo(A) < paig(A), and T' is diagonalizable if and only if jigeo(A) = ptag(A) for all A € F.

Finally, we define the characteristic polynomial and prove the Cayley-Hamilton
theorem. This will only be valid over C.

Proposition 66 (LADR 8.34, 8.37). Let T € L(V') be an operator on a finite-
dimensional complex vector space. Let A\, ..., \,, be the distinct eigenvalues of T,
with algebraic multiplicites dy, ..., d,,. Define the characteristic polynomial

g(z) == (. — A)® - .- (& = Ap)?.

Then q(T') = 0.

Proof. Since q(T') sends every generalized eigenvector of T' to 0, and since these gener-
alized eigenvectors form a basis of V', it follows that ¢(7") = 0. O]

Remark: The characteristic polynomial of a matrix operator A € L£(C") is the
familiar expression ¢(x) = det(xI — A). In practice, this is the only effective way to
calculate the characteristic polynomial. If you remember how to work with determinants
from Math 54, then you will be able to prove this. (The first step is to represent A
by an upper-triangular matrix, so without loss of generality, you will assume that A is
upper-triangular.)
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Jordan normal form - 7/19

Yesterday, we argued that every complex matrix admits a basis of generalized eigen-
vectors, so it is “generalized diagonalizable”. This is less useful than it sounds. For
example, the basis vectors ey, e, e3 are generalized eigenvectors of the three matrices

1 00 3 -1 -1 3 =2 0
010}, 12 0 -1}, |1 1 -1
001 2 -1 0 0 2 -1

for the eigenvalue 1, but the right two matrices are not in a form that is useful for
computations. Also, it is not obvious at first glance whether the right two matrices are
similar (they are not). We will need something better.

Nilpotent operators

Definition 39. Let N € £(V) be an operator on a finite-dimensional space V.
N is nilpotent if N* = 0 for some k € N.

In other words, V' = G(0,T): every nonzero vector is a generalized eigenvector of
N for 0.

Proposition 67 (LADR 8.55). Let N € L(V) be a nilpotent operator on a
finite-dimensional space. Then N is represented by a matriz (a;j);; with 0 in

every entry except for possible 1s on the superdiagonal, i.c. the entries aj j11,
1<k<n-1.

For example, the matrices

o O OO
o O O
o O O O
o~ O O
o O OO
o O O
o O = O
o = O O

are of this form.
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Proof. Induction on n = dim(V’). When n = 1, N must be 0.

In general, U := range(NN) # V (since N is not invertible), and N|y is also a nilpotent
operator. By the induction assumption, N|y is represented by a superdiagonal matrix
of this form.

Note that the basis with respect to which N|y has this matrix must be of the form
{Noy,, NE Yy, v, N2y, . g, o, N% g, 0}

for some vectors vy, ..., v, € U, such that N4+ly, = ... = N%*ly, = 0. Choose vectors
Uy, ..., ux € V with Nu; = v;. Then

{NEH oy Ny, g, N g g}
is linearly independent, because: applying N to any linear combination
A1t F o+ ALg 1 N g o Mg e A gt Ny, = 0
results in
AL101 F o+ Mgy N0y 4 o A A 10k 4 o+ Mg, N% 0 = 0

and therefore
It follows that

le.
d d
/\17d1+1N v+ ..+ Ak,dk—I—lN ko = 0.

These vectors are also linearly independent, so Ay 4,41 = ... = Ay g,41 = 0.

Notice that {N%wvy,..., N%u} is a basis of null(N) N U (which you can see by
applying N to a combination of the basis vectors of U above and setting it equal to 0).
Extending it to a basis {N%wvy, ..., N%uvg, wy, ..., w;} of null(N), it follows that

(N Ny, ug, N g, g, wy, .}
is still linearly independent. It spans V', because: if v € V, then

Nv:ZNevk elU

k.e

is a linear combination of vy, ..., N%uvy, so v differs from >, N by an element of
null(NV). O
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The matrix we have just constructed is the Jordan normal form of N. That was
the hardest part of constructing the Jordan normal form of an arbitrary operator.

Jordan normal form

Definition 40. A complex matrix A is in Jordan normal form if it consists
of Jordan blocks

Ay 0
A= :

0 A,

with
A1 0
Ay =

1
0 Aj

for some A\; € C. The A; do not have to be distinct!

Here are three examples of matrices in Jordan normal form:

21000 21000 20000
02000 02000 02000
00310, 003 10], 00300
00031 00030 00030
00003 00003 00003

The matrix on the left consists of two Jordan blocks; the matrix in the middle consists
of three Jordan blocks; the matrix on the right consists of five Jordan blocks.

Proposition 68 (LADR 8.60). Let T € L(V) be an operator on a finite-
dimensional complex vector space. Then T is represented by a matriz in Jordan
normal form.

Proof. For any eigenvalue )\;, the operator (7" — A\;I) is nilpotent on the invari-
ant subspace G(A;,T). Choose a basis {vy,1,...,uzx} Of each G(A;,T) for which
(T — Nil)|c (1) is represented in Jordan normal form; then T'|g(y, 1) is also represented
in Jordan normal form.

Combining the bases for each i gives a basis of V = G(A\,T) & ... ® G(\,, T') with
respect to which 7' is represented in Jordan normal form. O]

Here is an example of calculating the Jordan normal form.
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Example 55. Consider the matrix

A=

O O =
O~ N
— N W

The only eigenvalue is 1; it turns out that
dimnull(A — ) =1, dimnull(A — I)* =2, dimnull(4 — I)* = dim G(1,7T) = 3.

We start a Jordan chain by choosing an element of null(A—1)? that is not contained

0 0 4 1 0
nall(A— )2 =null [0 0 0 :Span< ol |1 );
0 00 0 0
0
for example, v3 = | 0 | will do. Then we define
1
0 2 3 0 3
’UQZ(A—I)UQ,: 0 0 2 0 = 2
000 1 0
and
0 2 3 3 4
Ulz(A—I)UQ— 0 0 2 2 = 0
0 00 0 0
You can verify that
12 3 430\ /1 10\ /43 0\ "
01 2]=(020 011 020
0 01 0 01 0 01 00 1

If we had ever found that null(A — I)* was not accounted for by the vectors we
had found previously, then we would find new vectors in null(A — I)* and start Jordan
chains at them also. Each Jordan chain corresponds to a single block in the Jordan
normal form.

If we are only interested in the Jordan normal form, and not the basis with respect
to which 7' is in Jordan normal form, we only need to look at the dimensions of certain
null spaces.

Example 56. Let T € £(C?) be an operator with eigenvalues 1 and 2, and assume
that
dimnull(T — I) =2, dimnull(T — I)* =4, dimnull(T —I)* =4

80



and
dimnull(T — 27) = 2, dimnull(T — 21)* = 3, dimnull(T — 21)* = 4.

Each Jordan block contributes exactly one eigenvector (up to scale), so there are 2
Jordan blocks for 1 and 2 Jordan blocks for 2.

The fact that null(T — I)? = null(T — I)? stops increasing means that both Jordan
blocks for 1 become 0 after squaring (T — I)?, so each Jordan block for 1 is (2 x 2).
On the other hand, since dimnull(7' — 2I)? = 3, only one of the Jordan blocks for 2
became smaller after squaring (T — 27)?; so one Jordan block was size (1 x 1) and the
other must be (3 x 3). The Jordan normal form is

11000000
01 00O0O0O0®O
0011O00O0O0
0001O0O0O0®O0
00002100
000O0O0Z210
000O0O0O0OZ20
000O0O0OO0O0 2

Here is what happens in general. Try this formula on the previous example.

Proposition 69. Let T' € L(V') be an operator on a finite-dimensional complex
vector space. For any A € F and k € N, the number of Jordan blocks for X of size
(k x k) in the Jordan normal form for T is uniquely determined and it is

2. (dim null(T — )\I)’“) — dimnull(T — AT)*! — dim null(T — AT)*+.

In particular, the Jordan normal form of 7" is unique up to reordering of the Jordan
blocks.

Proof. Without loss of generality, we may assume that A = 0 (otherwise, replace
T — M by T) and that 0 is the only eigenvalue of T' (since T' acts as an invertible
operator on all other generalized eigenspaces); so assume that 7' is nilpotent.

It is enough to prove that dimnull(7%) — dim null(7*71) is the number of Jordan
blocks of size at least k: because, assuming that, it follows that the number of Jordan
blocks of size exactly k is

(dim null(T%) — dim null(Tk_1)> - (dim null(T+1) — dim null(T’“))

—9. (dim null(T — )J)’“) — dimnull(T — AT)*! — dim null(T — AJ)*+L,
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If T is represented by the Jordan normal form

Al,l 0

Ara,

O An,dn

where A1, ..., Aj 4, are the Jordan blocks of size (j X j), then

dim null(T*) = Z dim null(Af’j).
1]

The nullity of the powers of a (5 x j)-Jordan block follows the pattern

1:
1: 57=1
dimnull(4;-) =1, dimnull(47_) = {2 ‘7 - 2’ dimnull(4_)=<2: j=2;
) . J > ; )
3

and we see that

1: 5>k
dim null(A?_) — dim null(A*7") = J =
’ " 0: Jj<k;

so dimnull(7T%) — dim null(7%!) counts 1 for each Jordan block of size at least k. [

Remark: For calculations, it is useful to know that a Jordan matrix decomposes
as J = D + N, where D is its diagonal, N = J — D is nilpotent and D and N
commute. (You can prove that D and N commute by showing that they commute on
each generalized eigenspace: D restricts to a multiple of the identity.) For example, we
will calculate the 100-th power

100

1 10
JO=10 11
0 01
1 00 010
Write J = D+ N where D = [0 1 O and N = [0 O 1] . Since D and N
0 01 000
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commute, the binomial theorem is valid and

JlOO — (D + N)IOO

100 100
= D' 4+ 100D* N D% N? D N3 +0+..40
+ + 5 + 5 Y +0+..+
1 100 4950
=10 1 100
0 0 1

The decomposition J = D + N is also called the (additive) Jordan-Chevalley decom-
position. (There is also a “multiplicative” Jordan-Chevalley decomposition, when J is
invertible: it is J = D(I + D~'N) = DU, where D and U also commute.)
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Inner product - 7/20

Inner product and norm

Today, [ is either R or C. When F = R, all definitions are the same, but the complex
conjugations should be ignored.

Definition 41 (LADR 6.3, 6.7). Let V' be a vector space over F. An inner
product on V is a function (—,—) : V' x V' — F with the following properties:
(i) (—,—) is positive definite: (v,v) > 0 for all v # 0.

(ii) (—,—) is sesquilinear (linear in the first entry and conjugate-linear in the
second):

M+ v, w) = Mu,w) + (v,w), {(u, \w+w) = Mu,v) + (u, w);

(iii) (—, —) is conjugate symmetric:

(u,v) = (v,u).

Example 57. On C", the dot product is defined by
(Wi, ey Wn), (21, oy 2n)) = W1ZT + oo + Wy Zn.
It is straightforward to verify conditions (i)-(iii) above.

We needed to include complex conjugation to make the inner product positive def-
inite. Trying to carry over the definition of inner product on R" to C" directly would

result in equations like
. 7 9 2
(i 1) (1)—2 r-o.

Example 58. Let V' be the space of continuous complex-valued functions on the in-
terval [0,1]. Then

(f.9) = /O f(2)9(x) dz

defines an inner product, called the L2-product.
More generally, we can define the L2-product on any bounded interval [a,b]. On un-
bounded intervals such as R, we should modify V' to make sure that the indefinite

integral [*_ f(z)g(z)dx exists for any f,g € V.

84



Definition 42. Let V be a vector space over F. A norm on V is a function
|- ]| : V — R with the following properties:

(i) || - || is positive: |Jv|| > 0 for all v # 0;

(ii) || - || is homogeneous: |[Av|| = |A| - ||v|| for any v € V and A € F, where ||
denotes the absolute value;

(iii) || - || satisfies the triangle inequality

[u+ ol < lull +vll, w,veV.

|| - || is an abstraction of the concept of “length” of a vector. Although for general
vector spaces V, this has no geometric meaning (what is the “length” of a polynomial?’),
we can apply geometric intuition to prove algebraic results in V.

Proposition 70 (LADR 6.10, 6.18). Let V' be a vector space with inner product
(—,—). Then

o] := +/ (v, v)

s a norm on V.

Proving the triangle inequality takes a little work. We will use another important
inequality to prove it - the Cauchy-Schwarz inequality:

7

N

Proposition 71 (LADR 6.15). Let V' be a vector space with inner product (—, —)
and induced norm || - ||. Then

[{w, )| < full - floll, w0 €V,

and equality holds if and only if {u,v} is linearly dependent.

Proof. Case 1: v = 0. Then both sides of the inequality are 0.
Case 2: v # 0. Define the vector

_ {w)
(0,0)

V—Uu

(geometrically, z is the distance between u and its projection onto the line through v).
Then:
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Rearranging this inequality gives us |(u,v)|* < (u,u) - (v,v), and the claim follows after
taking square roots. Equality occurs only when z = 0, in which case u is a multiple of
V. [l

Example 59. It is difficult to calculate the integral foﬂ V/sin(z) dz &~ 2.396 directly.

However, we can get a reasonably good bound by letting f = y/sin(z) and g = 1 and
calculating

/O“ Vem(@)dz = (f,g) < | £l - gl = \// |sin(z)] dz - \// Lo = V/r ~ 2,507,

letting (—, —) denote the L?-product on [0, 7].

Proof. [Proof of Proposition 70] (i) Since (—, —) is positive definite, || - || is also positive
definite.
(ii) For any A € F and v € V,

IXoll* = (A, o) = AX{v, v) = [AP[Jv]?,

so [[Av]| = [A] - [o]l-
(iii) For any u,v € V,

lu+v|* = (u+v,u+v)
= (u,u) + (v, u) + (u,v) + (v, v)
— Jlull® + 2Re u, v} ] + o]

< Jlull® + 2[(u, )| + lo]?
< [lull® + 2fjullllv] + flolf*
= (llull + llvll)*,
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where the last inequality was the Cauchy-Schwarz inequality. Therefore,

lw 4 vf| < Jlull + l]l- O

Conversely, we can ask when a norm comes from an inner product. It turns out
that there are many norms that do not; for example, on C", the maximum norm

(21, s 20) || oo := max{|z1], ..., |za|}

is a norm but it does not come from a scalar product (you will verify this on the problem
set). There is a simple criterion - but proving it would take a little too long. This is
known as the Jordan-von Neumann theorem.

Proposition 72 (LADR 6.22, 6.A.19, 6.A.20). Let || - || be a norm on a vector
space V. The following are equivalent:

(1) || - || is induced by a scalar product (—,—) on V;

(i) The parallelogram law holds:

lu+ol” + flu = vl|* = 2[lull* + 2|]0l*, u,veV.
In this case, the scalar product is given by the polarization identity:

lu+ oll* = flu —v|”

4

<u> U> -
if V' is a real vector space, and

lu+ ol = flu = vll* + dflu + @||* — iflu — iv|]?

if V is a complex vector space.

Proof. We will only prove the easy direction (i) = (ii). In this case, the squared norms
are inner products, and we can verify that

(u+v,u+v)+ {(u—v,u—0v)

= ((u, u) + (v, u) + {u,v) + (v,v>> + ((u,U) — (v, u) = (u,v) + <U7”>)
=2-(u,u) +2- (v,v).

In other words, |lu + v||? 4+ |lu — v||* = 2||ul* + 2||v||. O

Geometrically, the parallelogram law states that the sum of the squares of side
lengths of a parallelogram equals the sum of the squares of its diagonal lengths.
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Angle

e N

Definition 43 (LADR 6.A.13). Let V be a vector space with inner product

(—,—). The angle 0 € [0, 7] between two nonzero vectors u,v € V' is defined by
cos(f) = ) .
[[ull - o]l

Example 60. The angle between the vectors (1,0) and (1, 1), in the usual sense of an
angle between lines in the plane R?, is

cos() = (1,0)-(1,1)

1 V2
ICLO) - L DI 1-v2

2

™

le. 0 =

o~

[ Definition 44. Two vectors u,v € V are orthogonal if (u,v) = 0. ]

Orthogonal vectors are also called perpendicular. We’ll talk about that more
tomorrow.
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Orthogonality - 7/21

The field F will always be either R or C in this section.

Orthogonal basis

Proposition 73 (LADR 6.25). Let V' be a vector space and let {ey, ...,en,} be an
orthonormal list of vectors of V: i.e. (e;,ej) = &;; for all i,j. Then, for any
aiy ..y G € T,

larer + ... + amem|? = |aa> + ... + |am|*

You may have heard of Parseval’s theorem in the study of Fourier series: given a
Fourier series f(z) = " ¢, €2

n=—0oo

o

S a2 = 117 = / (@) da.

For example, f(x) = z has the following Fourier series on [0, 1]:

11 1,

= — _ _ecmine 0< <1

T 2—1-27”, ne , T ,
n#0

and therefore .
11 1 , 1
Sy - dr = =
4 * 472 ; n? /0 vy

and we conclude that Y 07 # = ’%f. This is an infinite-dimensional case of the theorem
above, and the proof is essentially the same.

Proof. Induction on m. When m = 1, |jaje;]|* = |a1|*(e1, €1) = |a1]?.
In general, we use the Pythagorean theorem: for any orthogonal vectors u,v € V,

lu+v||? = (u+v,u+v) = (u,u) + (v, u) + (u,v) +v,v) = [Jul|* + |lv]|>
=0 =0
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Since e, is orthogonal to aie; + ... + @y,_1€,—1, it follows that

|lare; + ... + amemH2 = ||aies + ... + am_lem_lﬂz s HamemH2
= |ay|* + .. + |@ma|? + [[GmEml?

= lai]® + ... + |am|?. ]

We immediately get the corollary:

Proposition 74 (LADR 6.26). Let V be a vector space and let {eq, ...,en} be an
orthonormal list of vectors. Then {eq,...,en} is linearly independent.

Proof. 1f
aier + ... + amen, =0,

then taking the norm squared shows that 0 = |a;|* + ... + |am|%; so |a;|*> = 0 for all 4; so
a; = 0 for all 7. O

If V has an orthonormal basis, then it is very easy to find the coefficients of v € V:

Proposition 75 (LADR 6.30). Let ey, ..., e, be an orthonormal basis of V.. For
any v €V,
v="{(v,e1)e; + ... + (v, e,)en.

Proof. If we write v = aje; + ... + a,e,, then

(v,er) = (ar1e1 + ... + apen, ex) = arer, ex) + ... + ap{en, ex) = ag. O

Now we prove that every finite-dimensional space has an orthonormal basis. This
proof is algorithmic: the algorithm is called the Gram-Schmidt procedure.
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Proposition 76 (LADR 6.31). Let V' be a finite-dimensional vector space with
basis {v1,...,v,}. Define vectors ey, ..., e, inductively by

U1
€1 =
o]
and
o= Vim(veer— .. — (V1)1
T oy = (vg,eder — oo = (vg, e5-1)ej|

Then ey,...,e, s an orthonormal basis of V with the property that
Span(ey, ..., e;) = Span(vy, ..., v;) for all 1 < j < n.

Proof. We prove by induction on j that {e,...,e;} is orthonormal and
Span(e, ..., €;) = Span(vy, ..., v;). When j reaches n, it follows that Span(ey, ..., e,) =V,
so {eq, ..., e, } is an orthonormal basis.

j = 1: This is because (e, €;1) = W(vl,vﬁ = 1.

For general j, defining e; as above, 1t follows that

1

(ej,en) = Tor = (o en)er = = (oo e {v; = (vj,er)er — ... — (v, ej-1)€5-1, €x)
1
 lys — {vj,ender — . — (v5,€5-1)ei| <<Uj’ek> N <Uj’€k>>
for any k& < j; and (ej,e;) = 1 was guaranteed by dividing the expression
Vj — ... — <Uj, €j,1>€j,1 by its norm.

Also, it is clear by definition that e; € Span(ey, ..., e;_1)+Span(v;) = Span(vy, ..., vj_1,7;);
ie.
Span(ey, ..., e;) € Span(vy, ..., v;).

Since {ey,...,e;} and {vy,...,v;} are both linearly independent, it follows that both
spaces are j-dimensional, so Span(ey, ..., e;) = Span(vy, ..., v;). ]

Example 61. We will find an orthonormal basis of P,(C), with its L? product

(p, q) :/0 p(IE)de.

Start with the basis {1,z,2?}.
Q) |12 = f, 12dz =1,50 e = 1.
(ii) eq is the expression z — (z, 1)1 = = — fol xdz =z — § divided by its norm

1 1/2
Hx—1/2||:\//0 (x—1/2)2dx:\// e = /112

1/
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e eg =122 — /3 = \/5(2:1: —1).

(iii) e is the expression
22 — (22, 1)1 — (22, V/3(2z — 1))V/3(2z — 1)

1 1
:ZEQ—/ ZEQdI—3(2£L‘—1)/ 22 — x*dx
0 0

1 1
=P - - — (22 —1
x 3 2(x )
1
_ 2 -
=2 x+6

divided by its norm

! 1
v -2+ 1/6| = / 2 —x+1/6)2dr = ——=,
I /6] 0( /6) 65
ie. e3 = 6v52% — 652 + V5 = V/5(622 — 62 + 1).

Remark: In general, infinite-dimensional spaces do not have orthogonal bases. The
reason is that, if {e;};cs is an orthogonal basis of V', then every v € V must be a finite
sum v = aieq + ... + aye, where ey, ...,e, € {e;}ics, and therefore (v,e;) = 0 for all e;
other than ey, ..., e,. (In particular, all but finitely many.)

In certain sequence spaces or function spaces, where infinite sums can be defined, an in-
finite combination of the e;’s will typically have nonzero scalar products with infinitely
many e;’s, and therefore could not have been a finite sum.

A concrete example of an inner product space with no orthonormal basis is the space
o0
2 = {(a1,as,as,...) : Z |a;)? < oo}
i=1

of sequences whose sum of squares converges, with the inner product

<((11, a2, a3, )7 (bla b27 b37 )> = Z azb_z
=1

Orthogonal complement

Proposition 77 (LADR 6.42, 6.B.17). Let V be a finite-dimensional vector space
with inner product (—,—). Then there is a real-linear isomorphism

r:v—V, T'Ww(u):=(u,v).

When V' is a complex vector space, I' is not complex-linear: because I'(iv) = —iI'(v)
instead of I'(iv) = i['(v).
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Proof. T is real-linear, since (—, —) is real-linear in both components.
It is injective, because: if T'(v) = 0, then [[v]]? = (v,v) = T'(v)(v) = 0.
Since dimg (V') = dimg(V’), it follows that I' is a real-linear isomorphism. O

In other words, for any functional b € V', there is a unique vector v € V with
Y(u) = (u,v). If we have an orthonormal basis ey, ..., e,, then it is easy to find v:
writing

U= aie] + ... + anty,

it follows that ¥ (e;) = (e;, a1e1 + ... + ane,) = a@;; so

v = w(el)el + .+ w(en>en-

Definition 45 (LADR 6.45). Let U C V be a subspace. The orthogonal
complement of U is the set

Ut ={veV: (vu)=0forallu e U}.

U+ itself is a vector subspace: for any v,w € U+ and A € F, and any u € U,
(Av+w,u) = v, u) + (w,u) =X-04+0=0.

When V is finite-dimensional, the identification I : V' = V’ identifies U+ with U?,
since the functional (—,v) annihilates U if and only if v € U*+.

Proposition 78 (LADR 6.47). Let U C V be a finite-dimensional subspace.
Then V =U @ U+,

Proof. (i) The intersection U N U+ is {0}, because: if u € UNU>, then u is orthogonal
to itself, so
lull® = (u,u) =0,

so u = 0.
(ii) The sum U + U~ is V, because: fix v € V and fix an orthogonal basis {ey, ..., e,}
of U. Then v — ((v,e1)e1 + ... + (v, e,)e,) is orthogonal to U, since

<v — ({v,e1)er + ... + (v,en>en),ek> = (v,ex) — (v,e) =0
for all k£, and

v = (v — ((v,e1)e1 + ... + (v, en)en)) + ((v,e1)er + ... + (v,en)e,) €U+ U. O
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In particular, when V' is finite-dimensional, it follows that

dim(U+) = dim(U?) = dim(V) — dim(U).

Proposition 79 (LADR 6.50). Let U C V be a finite-dimensional subspace.
Then U = (U+)*.

Proof. (i) Any element u € U is orthogonal to any element in U+ by definition of U+;
sou € (UT)*.

(i) Let v € (UY)*, and write v = u + w with w € U and w € U*. Then
w=v—u € (U')*, so w is orthogonal to itself; therefore, w =0and v =u € U. [

Definition 46 (LADR 6.53). Let U C V be a finite-dimensional subspace (so
V = U @ U"t). The orthogonal projection onto U is the map

Py:V—V, Pilu+w)=u, vel weU"

Py is also called the projection onto U along U~. It is the unique projector (an
operator P such that P? = P) with range(P) = U and null(P) = U+.

If we have an orthonormal basis of U, then it is easier to calculate the orthogonal
projection onto U:

Proposition 80 (LADR 6.55 (i)). Let U be a finite-dimensional subspace of V.
Let eq, ..., ey be an orthonormal basis of U. Then

Py(v) = (v,e1)e1 + ... + (v, em)em.

Proof. Since V = U @ U+, we can write v € V uniquely in the form v = u + w with
u € U and w € UL, Since

(v,ex) = (u+w, ex) = (u,ex) + (w, ex) = (u,ex) +0

for all k, it follows that

m m
E u, ep)e E v, ex)e ]
k=1 k=1

Example 62. We will calculate the orthogonal projection of 23 € P3(R) onto U := Span(1, z)
with respect to the inner product (p, g fo x) dz. We saw earlier that {1, 2v/32—/3 3}
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is an orthonormal basis of U. Therefore,
Po(a®) = (2%,1) + (%, 232 — V3)(2v/3z — V)
1 3v3
=—+ i(Z\/gx —V3)

4 20
9 1
= —r — —
10 5

You can verify that
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Self-adjoint and normal operators - 7/25

Adjoint

In the previous lecture, we showed that an inner product on a finite-dimensional space
V' almost allows you to identify V' with its dual V' via the real-linear isomorphism

Iy:V—V' T(v):=(—,v)

(although multiplication by i did not work out correctly); and under this identification,
the orthogonal complement of a subspace corresponds to its annihilator. Today, we will
study what happens to the dual map.

Definition 47. Let T" € L(V,W) be a linear map between finite-dimensional
inner product spaces. The adjoint of 7" is the map

T W —V

defined by
(Tv,w) = (v, T*w), veV, weW.

Other texts use 77 (“T dagger”) to denote the adjoint.

We are requiring (—, T*w) = (—,w) o T = T'({—,w)); in other words, the diagram

V T w
I'y ‘ 'y
vl T, W/

commutes. In particular, T* exists and is unique: it is 7% = I';;! o 7" o I'yy. Compare
this with LADR 7.A.20.

Example 63. Consider the space V = P;(R) with its L? inner product

(f.g) = / f(2)g(z) d,
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and the differentiation operator D € £(V'). The adjoint D* is defined by
(L, D*(1)) =(D(1),1) =0, (z,D*(1) =(D(x),1) =(1,1) =1,
so if D*(1) = ax + b, then

1 1 1
(1,aw+b):§a+b:0 and <x,ax+b>:§a+§b:1,

so D*(1) = 12z — 6. Also,
(1, D" () = (D)) =0, {, D°(2)) = (D), ) = (L) = 5,
so if D*(x) = ax + b, then

1 1 1 1
(1,ax + b) :§a—|—b:O and (z,ax +b) :§a+§b:§,
so D*(x) = 6z — 3. In other words,

D*(ax +b) = a(6x — 3) + b(12x — 6) = (3a + 6b)(2z — 1).

The following theorem proves that the adjoint 7™ is also linear, and gives a way to
calculate it quickly if we have an orthonormal basis given:

Proposition 81 (LADR 7.5, 7.10). Let T € L(V,W) be a linear map between
finite-dimensional inner product spaces, where V' has orthonormal basis ey, ..., e,
and W has orthonormal basis fi, ..., fm. Let M(T) = (ai;)i; be the matriz of T.
Then T™ is linear and the matrixz of T is

M(T) = (@5i)i 3

i.e. M(T*) is the conjugate transpose of M(T).

Proof. (i) T* is linear, because: for any A € F, wy,ws € W and v € V
(v, T*(Awy + wy)) = (T, Awy + wa) = MTw,w1) + (T, wy) = (v, \T*wy + T*ws),

i.e. T*()\U)l T U}Q) = )\T*wl aF T*wg.

(ii) Let (b;;);; denote the matrix of T™, i.e.

T*fj = Zbijei.
=1

Then . .
bij = (%;Zbije@? = (e, T f5) = (Tex, f3) = <Z akfi f5) = ajk,
i=1 i=1
SO % = a;jk. In other words, b;; = aj;. O]
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Example 64. We will work out the previous example, but with less effort. Letting
{er,ea} = {f1, fo} = {1,v/3(22 — 1)} be the ONB from Thursday, we see that D is

represented by the matrix (0 2v3

0 0
0 0) .
transpose (2\/§ O)’ 1.e.
D*(1) = 2v3(V3(2z — 1)) = 122 — 6

and D*(v/3(2z — 1)) =0, so

) . Therefore, D* is represented by its conjugate

D*(z) = D*(x — 1/2) + D*(1/2) = 1/2D*(1) = 6z — 3.

Proposition 82 (LADR 7.7). Let T' € L(V,W) be a linear map between finite-
dimensional inner product spaces. Then:

(i) null(T*) = range(T)*;

(ii) range(T*) = null(T)*.

Proof. (i) This is because
w € null(T*) & (v,T*w) =0Yv €V & (Tv,w)=0Yv eV < v crange(T)".

(ii) Taking orthogonal complements implies that null(7*)* = range(T’). Since this equa-
tion is also valid for T instead of T', we see that

null(7)* = range(7™). O

Self-adjoint operators

Definition 48 (LADR 7.11). Let (V, (-, —)) be a finite-dimensional inner prod-
uct space. An operator T € L(V) is self-adjoint if 7' = T*.

When V is a real vector space, self-adjoint operators are also called symmetric;
when V' is a complex vector space, self-adjoint operators are also called Hermitian.
It is more precise to say that the matrix of a self-adjoint operator with respect to an
orthonormal basis of V' is Hermitian; that means, it equals its own conjugate transpose.

Example 65. The matrix (_12 i) is Hermitian; on the other hand, the matrix C i)

is not Hermitian.
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Proposition 83 (LADR 7.13). Let T' € L(V) be a self-adjoint operator. Then
every eigenvalue of T is real.

This is true by definition when V' is a real vector space, but it is an interesting
statement over C.

Proof. Let Tv = A\v, where v £ 0 and A € F. Then
Mv,v) = (Qw,v) = (Tw,v) = (v,Tv) = (v, W) = A(v,v),

SON=\. O]

0 1
(i.e. self-adjoint with respect to the dot product) although it has real eigenvalues. Here
is a sort of converse:

. . 1 1Y). ..
Of course, the converse is false: for example, the matrix ( ) is not Hermitian

Proposition 84 (LADR 7.15). Let T € L(V) be an operator on a finite-
dimensional complex inner product space. Then T is self-adjoint if and only
if (Tv,v) € R for allv e V.

Proof. (i) Assume that T' is self-adjoint. Then

(Tv,v) = (v, Tv) = (Tw,v) forallv € V;

here, the first equality uses self-adjointness and the second is the conjugate symmetry
of <_7 _>‘
(ii) Assume that (Tw,v) is real for all vectors v € V. Using

(Tv+w),v+w) — (T(v—w),v—w) =2(Tv,w) + 2(Tw, v)

(since the (Tv,v) and (T'w,w) in the above expression cancel), we replace w by iw and
get

(T (v+iw), v+iw)— (T (v—iw), v—iw) = 2(Tv, iw)+2(T (iw),v) = —2i{(Tv, w)+2i{Tw,v).
Combining these shows that
(T, w) = }1 ((T(v-l—w), -+ (T (v—w), v—1w) i (T (v+iw), v-Hiw) —i{T (v—iw), v—iw)) .
Swapping v and w and considering that
(T(v+iw),v +iw) = (—iT (v + iw), —i(v + iw)) = (T(w — ), w — iv)
and (T'(v —iw),v — iw) = (T'(w + iv), w + iv) shows that
(Tv,w) = (Tw,v) = (v, Tw), v,w € V. O
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In particular, the self-adjoint operators as a subset of £(V') are a kind of general-
ization of the real numbers R C L(C).

Proposition 85 (LADR 7.16). Let T € L(V) be a self-adjoint operator such that
(Tv,v) =0 for allv € V. Then T = 0.

Proof. For any v,w € V, since
(Tv+w),v+w) —(T(v—w),v—w) =2(Tw,v) + 2(Tv,w) = 4(Tv, w)
(using the fact that T is self-adjoint), it follows that

(T(v+w),v+w)y —(T(v—w),v—w)
4

for all w € V. Therefore, Tv = 0. [l

=0

(Tv,w) =

Normal operators

Definition 49. An operator on a finite-dimensional inner product space
T € L(V) is normal if it commutes with its adjoint: 77" = T*T.

Remark: Over C, any operator T" can be decomposed into its “real” and “imagi-
nary” parts:
_Tr+Tt T-T
-T2 T
where R, S are self-adjoint. T is normal if and only if R and S commute. Be careful
that R and S are not the real and imaginary parts in the usual sense: for example, the

T

— R+iS,

decomposition of the normal matrix ((1) _01> is

()= 6o (5 )

Proposition 86 (LADR 7.20). An operator T' € L(V') is normal if and only if

[Tl = [[T"]]

forallveV.
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Proof. The operator N := T*T — T'T* is self-adjoint, and T is normal if and only if
N = 0. By LADR 7.16,

N=0 < (Nv,v)=0VYveV.
Writing
(Nv,v) = (T"Tv,v) — (TT",v) = (Tv, Tv) — (T"v,T*v) = | Tw|* — |T"v||*

makes it clear that
(Nv,v) =0 & [[To|| = [|[T0|

for all v € V. O]

Proposition 87. Let T' € L(V') be a normal operator. Then

null(7*) = null(7") and range(7T™) = range(T).

In particular, null(7)* = null(7*)* = range(T).

Proof. (i) By the previous proposition, ||7*v|| = 0 if and only if || 7| = 0.
(ii) This is because range(T*) = null(T)* = null(T*)* = range(T). O

In particular, v € V is an eigenvector of T" for A if and only if
v enull(T — M) = null(T — AI)* = null(T* — \),

i.e. if v is an eigenvector of T™ for A.
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Spectral theorem - 7/26

Real spectral theorem

V' will denote a nonzero, finite-dimensional inner product space over R or C.

The spectral theorem is arguably the most important criterion for diagonalizability:
the conditions (self-adjoint resp. normal) are often straightforward to verify, and ap-
ply to a large number of operators that occur in “real life”. For example, the Hessian
matrix of a smooth function is symmetric. Also, all rotations and reflections of R™ are
normal.

Proposition 88 (LADR 7.26, 7.27). Let T € L(V) be a self-adjoint operator.
Then T has an eigenvalue.

Proof. Assume that F = R.
Let p(z) denote the minimal polynomial of 7', and assume that p has no real roots.
Then p can be factored in the form

p(z) = (2 + bz +c1) ... (22 + bz + Cp),

where each 22 + byx + ¢, has a pair of complex conjugate roots; in particular, its
discriminant b7 — 4c; < 0 is negative. Then T? + byT + ;I is an operator with the
property that, for any nonzero v € V,

(T? + b, T + ci1)v,v) = (T?v,v) + bp(Tv,v) + cx (v, v)
= | T0l* + bi{Tv, v) + cxlvll?,

since (T?v,v) = (Tv,Tv) = ||Tv||* by self-adjointness. Using the Cauchy-Schwarz
inequality,

170 + bi(Tv, ) + cxllv]|* = [ Tol* = [BelI Tll[v] + el

1 2 b2 )
= (IToll = Zlewltoll)” + (e = =) fol
g NS /v

vV vV
>0 >0 >0

(.

> 0.
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Therefore, (T2 + b, T + ¢ I)v must have been nonzero, so T? + by T + ¢ I is injective
and therefore invertible.

But this implies that p(T) = (T? +b,T + 1) - ... - (T? + b,,T + ¢,, 1) is a product of
invertible operators and therefore p(7') is invertible. Contradiction, because p(T") = 0.
O

Now we prove that self-adjoint operators are semisimple: every invariant subspace
has an invariant complementary subspace. It turns out that over C, this is equivalent
to diagonalizability. It is also the key to the spectral theorem in this situation.

Proposition 89 (LADR 7.28). Let T' € L(V) be a self-adjoint operator and let
U CV be an invariant subspace. Then U~ is also invariant, and the restrictions
T|y and T|y1 are self-adjoint.

Note that (—, —) restricts to a scalar product on U.

Proof. (i) U* is invariant, because: for any v € U+ and w € U,
(Tv,w) = (v,Tw) € (v,U) = {0},

so T'v is also orthogonal to U.
(i) T'|v is self-adjoint, because

(T|yv,w) = (Tv,w) = (v, Tw) = (v, T|yw)

for any v, w € U. Similarly, T'|;;1 is also self-adjoint. O

Proposition 90 (LADR 7.29). Let T € L(V) be an operator.

(1) Any self-adjoint operator T' is orthogonally diagonalizable: there is an
orthonormal basis of V' consisting of eigenvectors of T.

(11) If V is a real vector space, then any orthogonally diagonalizable operator is
self-adjoint.

Proof. (i) Induction on n = dim(V'). This is clear when n = 1.

In general, fix an eigenvector v; € V and assume without loss of generality that
|v1|| = 1. Define U := Span(v;); then U is an invariant subspace, so U~ is also invari-
ant. By induction, T'|;;1 is orthogonally diagonalizable: there is an orthonormal basis
{vy, ..., v, } of UL consisting of eigenvectors of T|y 1. Then vy, ..., v, is an orthonormal
basis of V' consisting of eigenvectors of T'.
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(ii) Let vy, ..., v, be an orthonormal basis of V' consisting of eigenvectors of 7', and
let A\q,..., A\, be the corresponding eigenvalues. Then, for any i, j,

(Tvi, v5) = (Aivi, v3) = Aibig = A;0ij = (Ui, Aju;) = (vi, Tvy).

This implies that (T'v,w) = (v, Tw) for any vectors v,w € V. Here, we are using the
fact that \; is real in order to know that (v;, A\;v;) = A\;(v;, v;). O

Complex spectral theorem

V will denote a nonzero, finite-dimensional inner product space over C.
The following theorem comprises the main part of the complex spectral theorem.
We will give several independent proofs to make the theorem extra convincing.

[ Proposition 91. Let T' € L(V') be a normal operator. Then T is diagonalizable. ]

Proof. Let p(x) be the minimal polynomial of 7', and assume that p has a double root:
i.e. p(z) = (x—\)2r(z) for some A € F and r € P(C). Define ¢(z) := (z—A\)r(z) = 22

T—\"

Then p is a factor of ¢%, so ¢(T) is a normal operator with ¢(7")* = 0. Using LADR 7.20
(proposition 86 from yesterday), it follows that

0= [lg(T)a(T)vl* = llg(T)"¢(T)v||* forallv €V,
i.e. q(T)*q(T) = 0. Therefore,

0 = (q(T)*q(T)v,v) = (q(T)v, ¢(T)v) = |lg(T)v|?

for all v € V, so ¢(T') = 0. This is a contradiction, because deg(q) < deg(p). O

Proof. Consider the decomposition 7" = R + S, where R,S are self-adjoint and
RS = SR. By the real spectral theorem, R and S are both diagonalizable; since they
commute, the sum R + ¢S is also diagonalizable.

Explicitly: each eigenspace E(A,S) of S is R-invariant, because Sv = Av implies
S(Rv) = RSv = R(M\v) = ARv. By diagonalizing R|p(,s) for each eigenvalue A of S,
we get a basis of V' consisting of vectors that are simultaneously eigenvectors for R and
for S. Any such vector will also be an eigenvector of R + ¢.5. m
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Proof. Induction on n = dim(V’). When n = 1, this is clear.
In general, let A be any eigenvalue of 7T, and define the T-invariant subspace
U =range(T — AI). Then U is also T*-invariant, because:

T"(T—X)v=T"Tv— X X["v=(T-X)T"veU

for any v € V. Therefore, T|y and T*|y are well-defined and T'|y is normal, with
(T|y)* = T*|y. By induction, U admits a basis of eigenvectors of 7. Also, since T is
normal, the orthogonal complement of U is

Ut = range(T — M) = null(T — \I),

which admits a basis of eigenvectors of T' by definition. Therefore, V' admits a basis of
eigenvectors of 7. O

Proof. Let vy, ..., v be any Jordan chain for T' for some eigenvalue A\ € C, and assume
that k£ > 2. In other words, T'v; = Av; + v;_; for all j. Then

V1 = (T — )\_[)UQ,

SO
vy € range(T — AI) Nnull(T" — \I).

Since T'— A is normal, it follows that null(T" — AI) = range(T — AI)* and therefore
v = 0; contradiction.

Therefore, the Jordan normal form of T consists only of (1 x 1)-blocks; ie. T is
diagonalizable. O]

Proof. Schur’s theorem states that, for any operator T, there is an orthonormal basis
{e1,...,en} of V with respect to which T is represented by an upper triangular matrix.
This is not hard to prove: if {vq,...,v,} is any basis of V such that all Span(vy, ..., vy)
are T-invariant, then the Gram-Schmidt process gives us an orthonormal basis
{e1,...,en} such that all Span(e, ..., ex) = Span(vy, ..., v) are T-invariant.

Assume that

11 Q1.n
M(T) = :
0 Qn,n
Since T' is normal,
la11)? = |Ter|)® = |T*ex]|® = lara]* + |as2l® + ... + |arnl?,
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SO @12 = ... = a1, = 0. It follows that

|az2|? = |aro]® + laze]® = |Tea|)® = |[T*ea||* = |azel? + lazsl® + ... + |azal?,

SO (g3 = ... = ag, = 0.
This argument shows that all nondiagonal entries of M(T') are 0, so {ej,...,e,} is a
basis of eigenvectors of T'. m

Now we prove the spectral theorem:

Proposition 92 (LADR 7.24). Let T' € L(V) be an operator. The following are
equivalent:

(1) T is normal;

(11) T is orthogonally diagonalizable.

Proof. (i) = (ii): We have already seen that T is diagonalizable. If v, w are eigenvectors
for distinct eigenvalues of T', with Tv = Av and T'w = pw, then

w= (T — X)(pp — \)"'w € range(T — M) = null(T — A )*
and therefore (v, w) = 0.

(ii)) = (i): Let vy, ..., v, be an orthonormal basis of eigenvectors of 7" with eigenvalues
A1, ..oy Ap. Then

<T*T’Ui,’Uj> = <TU¢,T’U]'> = <)\i’Ui, )\j’Uj) = AZA_J(SU = |>\i’25ij7

and

<TT*'UZ',’UJ'> = <T*UZ',T*U]'> = <)\_ivi>)\_jvj> = )\1)\35” = |)\Z|25”,
these are equal, so T*T = TT"*. O
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Positive operators and isometries - 8/1

Positive operators

Definition 50. Let V' be a finite-dimensional inner product space. A self-adjoint
operator 7' € L(V) is positive if

(Tv,v) 20

for all v € V.

Positive operators are often called positive semidefinite. This is distinguished
from positive definite operators, which have the strict inequality: (T, v) > 0 for all

v # 0.

Example 66. The orthogonal projection Py onto a subspace U C V is positive semidef-
inite, because: for any v € V,

(Pu(v),v) = (Pu(v), Pu(v) +v = Py(v)) = (Py(v), Py(v)) > 0.
—

eUL

Proposition 93 (LADR 7.35). Let T € L(V) be an operator on a finite-
dimensional inner product space. The following are equivalent:

(1) T is positive semidefinite;

(11) T is self-adjoint, and all eigenvalues of T' are nonnegative;

(111) T is the square of a self-adjoint operator;

(v) There is an operator R € L(V') such that T = R*R.

Proof. (i) = (ii): Let v be an eigenvector of T with eigenvalue A; then
AMv]|? = (w,v) = (Tw,v) >0, s0 A > 0.

(ii) = (iii): Let ey, ..., e, be an orthonormal basis of eigenvectors of 7', with real nonneg-
ative eigenvalues A, ..., A, (which exists by the spectral theorem). Define an operator
R by Re, = v/ Ayei. Then R is orthogonally diagonalizable with real eigenvalues, so it
is self-adjoint; and R%ej, = VRer = Avex = Tey, for all k, so R?2 = T.
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(iii) = (iv): If T = R? where R is self-adjoint, then T is also R*R.
(iv) = (i): For any v € V,

(Tv,v) = (R*Rv,v) = (Rv, Rv) > 0. O

In particular, knowing that (ii) = (i) holds, we see that the operator R constructed
in the proof of (ii) = (iii) is positive semidefinite; so every positive semidefinite operator
has a positive semidefinite square root.

There is a similar characterization of positive definite operators:

Proposition 94. Let T € L(V) be an operator on a finite-dimensional inner
product space. The following are equivalent:

(1) T is positive definite;

(11) T is self-adjoint, and all eigenvalues of T' are strictly positive;

(111) There is an invertible operator R € L(V') such that T = R*R.

The proof is almost exactly the same. You should work out the details!

Finally, we will show that the positive square root is unique:

Proposition 95 (LADR 7.36, 7.44). Let T € L(V) be a positive semidefinite
operator. Then the positive square root is unique. It is denoted V/T.

Example 67. In general, an operator that has a square root (not necessarily positive
semidefinite) will have far more than two of them. For example, the square roots of

10 . 10 1 0 .
(0 1) on C consist of + (0 1), + <O _1>, and every matrix of the form

((1 —C;Q)/b _ba) a,beC, b#0.

Proof. (i) The only positive square root of a positive multiple of the identity A/
is R = /A, because: let R be positive semidefinite with R2 = AI. Then R is
diagonalizable, and for every eigenvalue u of R, p? is an eigenvalue of I (i.e. p? = \).
Since p is nonnegative, it must be V.

Since R is diagonalizable with no eigenvalues other than v/, its minimal polynomial
must be  — V/X; therefore, R — v AI =0 and R = VAI.

(ii) Let T be an arbitrary positive semidefinite operator. On each eigenspace

E(X,T), the only positive square root of T'|gx1) = M |gor) is \/XI\E(,\’T). Therefore,
Rv = v/ for any eigenvector v € E(\,T), so R is uniquely determined. O

108



One of the important applications of positive operators is in classifying the inner
products on R" (or C"):

Proposition 96. Fvery inner product on C" has the form
(v,w) = v Gw

for a unique, positive definite (with respect to the dot product) matriz G (called
the Gram matriz of the inner product). Conversely, if G is a positive definite
matriz, then (v,w) = vI Gw defines a scalar product on C".

Proof. Let eq, ..., e, be the standard basis of C", and define G by
Gij = <6i,6j>.
Then, for any v = (vy, ..., v,) and w = (wy, ..., wy,),

(v,w) = Z<Uz‘€i; wje;) = Zviw_j(ei, e;) = v Gw.
1,

i’j

The matrix G is positive definite, because:
(i) it is self-adjoint, i.e. Hermitian:

Gji = (ej, e5) = (ei, €5) = Gij;
(ii) for any v # 0, (Gv) - v = (Gv)Tv = vI'Gv = (v,v) > 0.

Conversely, if G is positive definite, then (v, w) := v GW is sesquilinear;

(w,v) = w' GT = (W GD)T =77 GTw = vTGw = (v, w),
and for any nonzero vector v,

(v,v) =vTGT = (Gv) -v > 0. O

Isometries

Definition 51 (LADR 7.37). A linear map S € L(V, W) between inner product
spaces is an isometry if ||Sv| = ||v]| for all v € V.

This differs from the definition in the textbook, which only refers to operators on a
single space as isometries.
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[sometric operators on real inner product spaces are usually called orthogonal op-
erators; isometric operators on complex inner product spaces are usually called unitary
operators.

Proposition 97 (LADR 7.42 (a),(e)). Let S € L(V,W) be a linear map between
finite-dimensional inner product spaces. The following are equivalent:
(1) S is an isometry;

(ii) S*S = I.

Proof. (i) = (ii): Assume that ||Sv|| = ||v|| for all v. Then
(S*Sv,v) = (Sv, Sv) = (v,v) forallv eV,
so S*S — I is a self-adjoint operator with the property that
((S*S = Nv,v) =0

for all v € V. This implies that S*S — I =0, so S*S = I.
(i) = (i): If S* = S, then

(Sv, Sv) = (S*Sv,v) = (v,v)

for all v € V; taking square roots shows that ||Sv|| = ||v|| for all v € V. O

In particular, every isometric operator is normal: its adjoint is its inverse.
Remark: The adjoint of any isometric operator is also isometric: this is because
S*S = I implies that S* = S7! so (S*)*S* = SS* = §S7! = I. On R™ with the
dot product, this reduces to the statement that, if the columns of a square matrix are
orthonormal, then the rows of that matrix are also orthonormal.
The adjoint of an isometry between two different spaces does not need to be isometric.

Proposition 98 (LADR 7.42 (b), (c), (d)). Let S € L(V,W) be a linear map.
The following are equivalent:

(i) S is an isometry;

(i1) (Su, Sv) = (u,v) for allu,v € V;

(iii) For any orthonormal basis ey, ..., e, of V., S(e1), ..., S(en) is an orthonormal
list in W,

(iv) There is an orthonormal basis e, ...,e, of V' such that S(ey), ..., S(en) is an
orthonormal list in W.

Proof. (i) = (ii) Since S*S = I, it follows that (Su,Sv) = (S*Su,v) = (u,v) for all
velV.
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(i) = (iii): This is because (S(e;), S(e;)) = (e;, €;) = d;; for all 4, j.

(iii) = (iv): This is clear.

(iv) = (i): For any v = Aje; + ... + A\,en, by the generalized Pythagorean theorem,
1Sv||?> = [|MS(e1) + ... + AnS(en)|l? = AP+ oo+ M2 = || A6 + oo+ Anenl? = 0],

so [[Sl| = [[o]l. O

Proposition 99 (LADR 7.43). Let S € L(V) be an operator on a finite-
dimensional complex inner product space. The following are equivalent:

(1) S is an isometry;

(11) S is normal, and the absolute value of any eigenvalue of S is 1.

Proof. (i) = (ii): Every isometry S commutes with its adjoint S* = S~!. Also, if
is an eigenvalue of S with eigenvector v, then ||v|| = ||Sv|| = ||\v|| = |A|-||v||, so |A| = 1.

(ii) = (i): Since S is normal, if A is any eigenvalue of S with eigenvector v,
S*Sv = S*(\v) = AS*v = AMw = |\*v = v.

Therefore, S*S agrees with I on a basis of eigenvectors of S, so S*S = I. O
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Polar and singular value decomposition - 8/2

Polar decomposition

Proposition 100 (LADR 7.45). Let T € L(V) be an operator on a finite-
dimensional inner product space. Then there is an isometry S such that

T =SvT*T.

Here, v/ T*T is the positive semidefinite square root of T%T.

Proof. We define the linear map

Sy : range(VT*T) — range(T), Sy(VT*Tw) := Tw.
This is well-defined, because: if vVT*Tv; = VVT*Tv, then

T*Tvy = VT*TVT*Tv; = VT*TVT*Tvs = T*Tvs,

SO
||TU1 — TU2||2 = <T(U1 — UQ),T(UI — Ug)) = <T*T(U1 — Ug),Ul — ’U2> = 0
=0
and T'(vy) = T'(v2).

S1 is surjective by definition: every vector Tv € range(T) is the image of v T*Tv.
Also, S; preserves norms: for any v € V,

|VT*Tv||? = (VT*Tv, VT*Tv) = (T*Tw,v) = (Tv, Tv) = ||Tv|>.

This implies in particular that it is injective: if Tv = 0, then ||VT*Tv|| = ||Tv|| = 0,

so VI*Tv was 0.

Since range(v/T*T') and range(T") are isomorphic subspaces of V' (via the isomor-
phism S;), they have the same dimension. Taking orthogonal complements, it follows
that

dim range(vVT*T)* = dim range(T)",
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so we can find an orthonormal basis e, ..., e, of range(v/T*T)* and a linear map

Sy : range(VT*T)*~ — range(T)™*

such that Sa(eq), ..., S2(e,) is also an orthonormal basis. In particular, ||S2(v)|| = ||v|
for all v € range(v/T*T)*.

Let¢ S : V. — V be the linear function with S|, .77 = S and
Slrange(v ). = S2. Then S is an isometry, because: for any vector

v=u+w €V, withu € range(VT*T), w € range(VT*T)",

we know that S(u) € range(T) and S(w) € range(T)* are orthogonal, so the
Pythagorean theorem implies that

1Sv]|* = [1Su + Swl|* = [|Sull® + [|Sw|* = [lull* + w]* = [|v]|*.
By construction, for any v € V,
SVT*Tv = $\VT*Tv = T,
so SVT*T =T. ]

Remark: The proof can be made much shorter if we assume that 7T is invertible: in
this case, v T*T is also invertible, since its square T*7T" is positive definite. Define S by

S :=TWT*T)™
then since T* = (SVT*T)* = VT*TS*, it follows that
S =TT NTT - S*S -NTINTT = VT*T TTNT*T ' =1,

so S is unitary.

Example 68. The polar decomposition of complex numbers is a special case. For
any nonzero A € C\{0}, interpreted as an operator on C, the adjoint is the complex
conjugate: \* = A\. The polar decomposition becomes

= re?,

where r = VA*A = |A] and e = ..

Remark[LADR 7.D.8, 7.D.9] Given any other factorization 7' = SP, where S is iso-
metric and P is positive (semidefinite), we see that
T*T = P*S*SP = P*P = P?,

and therefore P = /T*T is the positive square root of T*T. In this sense, the polar
decomposition is unique: the operator P is uniquely determined and if 7" is invertible,
then the isometry S = TP~ is uniquely determined.
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Singular value decomposition

Singular value decompositions of a matrix (or operator) are used in applied mathematics
and statistics. Instead of studying the operator T itself, we study the eigenvalues of
the positive semidefinite operator /T*T'; the spectral theorem guarantees that v/71T*T
will have nice properties (for example, diagonalizable with real eigenvalues), and we use
this to approximate properties of T'.

Although we will not go into the applications here, you may remember a similar idea
from Math 54: to approximate solutions to an unsolvable system of equations Ax = b,
we studied the normal equations (AT A)z = ATb instead.

Definition 52 (7.49). Let T € £(V') be an operator. A singular value of 7" is
an eigenvalue of /T*T.

Since v T*T is positive, the singular values sy, ..., s, of T are all real and nonnegative.

Remark: The greatest singular value of T is often called the spectral norm of T,
denoted ||T|5.
This is definite, because: if all eigenvalues of v/ T*T are 0, then it follows that v T*T = 0;
using the polar decomposition, we conclude that T = 0.
It is homogeneous, because: for any A € C, the eigenvalues of /(AT)*(AT) = |A|[VT*T
are exactly |A| times the eigenvalues of vT*T.
The triangle inequality is harder to verify.
Question for the reader: is the spectral norm induced by an inner product on £(V')?

Proposition 101 (LADR 7.51). Let T' € L(V) have singular values sy, ..., Sp.
Then there are orthonormal bases ey, ...,e, and fi,..., f, of V such that

Tv = s1(v,e1) f1 + ... + (v, €n) fr

forallveV.

Proof. Let eq,...,e, be an orthonormal basis of eigenvectors of vT*T with eigen-
values si,...,s,. Let T = SVT*T' be the polar decomposition of T, and define
fi = Seq,..., fn = Se,. Since

v={(v,e1)e; + ... + (v, en)en,
it follows that

Ty =SVT*Tv = S<51<v, er)e; + ... + sp(v, en>) =s1(v,e1)f1+ ... + sn(v,en) fr. O

This can be formulated as follows: the matrix of T with respect to the orthonormal
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bases B = {ey,...,e,} and C = {f1,..., fn} is

S1 0
ME(T) =

0 Sy,

This property determines the singular values:

Proposition 102. Assume that ey, ...,e, and fi,..., f, are orthonormal bases of
V' with the property that Ter = sifr for monnegative real numbers si. Then
S1, ..., Sy are the singular values of T'.

Proof. Since
{e;, T fu) = (Tej, fr) = (8;fi» fx) = OikS; = OjkSk = (€5, Sk€k)

for all 1 < j,k < n, it follows that T* fy = sgey. Therefore, T*Te, = s T i, = s2e, SO
st is an eigenvalue of T*T. Therefore, its nonnegative square root s is an eigenvalue
of /T*T, i.e. a singular value of T'. m

The proofs above are deceptively short. Calculating the singular value decomposi-
tion is a lot of work, even for very simple operators.

Example 69. We will work through the singular value decomposition of the matrix
A= G ?) (with respect to the dot product on R?). In other words, we will find
orthogonal matrices P and () and a diagonal matrix ¥ with nonnegative entries such
that

A=PYQ ' =PxQT.

In the notation above, the columns of () will be €1, e5 and the columns of P will be f, fs.

2

1
/3 5 [3 =D
S1 = +2\/_ ~ 1618, SS9 = 2\/_ ~ (0.618.

The corresponding orthonormal basis of eigenvectors of AT A is (up to a choice of +1)

/545 _ . [5=V5

e = 10 ey = 10
5-5 545

10 10

The eigenvalues of ATA = (? 1> are 3£Y5 5o the singular values of A are
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This allows us to compute the positive square root

VATA = 020"
[54v5 _ [/5=v5 3+v5 0 \/5+\/5 \/5*\/5
— 10 10 2 10 10
\/5—¢5 5+v/5 0 s—v5 | \ _ [5=v8  [5+vB
10 10 2 10 10

- (s ave)

and therefore the polar decomposition

s - (1 (4 1) -4 2

Finally, the matrix P will be
P—(Ser Ses)— (V5 U5 VERE A (VRS
' 2 1/vV5  2/V5 \/57\/5 \/5+\/5 545 5-V5

10

10 10 10

The singular value decomposition is now

/5-v/5 _\/5+¢5 \/3+\/5 0 \/5+\/5 \/57\/5
A=PyQT = 10 10 2 10 10
\/5+¢5 \/5—\/5 0 [3=v5 | \ _ [5-v8 [5+v5
10 10 2 10 10
The first practical algorithm for computing the SVD (and essentially the same al-
gorithm still used today) was found by Stanford professor Gene Golub and Berkeley
professor William Kahan in 1965. Golub was so proud of this that he referenced it on his

license plate: https://upload.wikimedia.org/wikipedia/commons/9/90/Profsvd.
JPG
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Complexification - 8/3

Complexification

Complexifying a real vector space is an abstraction of creating C" from R™ by attaching
imaginary parts to real vectors.

Definition 53 (LADR 9.2). Let V be a real vector space. The complexification
of V' is the set
Ve=V xV,

with its componentwise addition. Scalar multiplication by complex numbers is
defined by

(a+bi) - (v,w) = (av — bw, bv + aw).

This makes Vi a C-vector space. Elements (v, w) € V¢ are usually denoted v + w.

Proposition 103 (LADR 9.4). Let V' be a real vector space with basis vy, ..., Uy,.
Then vy, ..., v, are a basis of V.

Here, v, denotes vy + 0i € V.

Proof. (i) vy, ..., v, spans V¢, because: let v + iw € V¢ be any element, and write
V=AU + . + AgUny, W= U1 + oo+ gV, A, g € R

Then v + iw = (A1 + ip1)vy + ... + (A + it On.
(ii) vy, ..., v, is linearly independent, because: assume that

(A1 +ipr)vr + oo + (A + i) = 0.
Comparing the real and imaginary parts shows that
AU+ e+ AUy = vy + o+ v, =0

in the real vector space V,s0o A\ = gy = ... = A\, = p, = 0. O
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Definition 54 (LADR 9.5). Let V' be a real vector space and let T' € L£(V') be
an operator. The complexification of T is the map

Tc : Ve — Ve, T@(U T Z"LU) = T(’U) I ’LT(’LU)

Tt is C-linear, because: it is R-linear, and
Te(i(v + iw)) = Te(iv —w) = T(—w) + T (v) = i(T(v) +iT(w)) = iTc(v + iw)
for all v,w € V.

Proposition 104 (LADR 9.7). Let T' € L(V) be an operator on a real vector
space, and fix a basis vy, ...,v,. Then the matrizc M(T) of T equals the matrix
M(Tc) Of T(c.

In particular, the complexification of a matrix map A € R™" is just the same matrix,
where the entries are interpreted as complex numbers: A € C™".

Proof. It M(T') = (aij);;, then Tv; = Y | a;;v;; therefore,
Te(v;) = T(v;) = Zaijvia
i=1
SO M(T(C) = (aij)ivj. O]

Tt inherits many of the properties of T'. We will list a few here.

Proposition 105 (LADR 9.10). Let T € L(V) be an operator on a real vector
space. Then the minimal polynomial of T equals the minimal polynomial of Tc.

Proof. Using the definition T¢(u + iv) = T'(u) + i1'(v), it follows that
Té(u+iv) = Te(T(u) +iT(v)) = T?(u) + iT%(v),
and repeating this argument shows that
Té(u+iv) = T (u) + 1T (v)
for all u,v € V. Therefore,
p(Tc)(u + iv) = p(T)u + ip(T)v, u,v € V

for any real polynomial p € P(R). In particular, if p is the minimal polynomial of T’
then we see that

p(Tc)(u +iv) = p(T)u + ip(T)v = 0 + 0i.
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We need to check that allowing complex coefficients does not let us find a polynomial
q € P(C) of smaller degree such that ¢(7¢) = 0. Assume that ¢(7T¢) = 0 and write

n

q(z) = Z(ak + iby, ) 2"

k=0

Then

0=q(Tc)v = Z(ak + by ) Tev = (ZakaU> + i(Zkakv>
k=0 k=0 k=0
for all v € V, so Y p_ a,T% = Y p_ bT" = 0. Therefore, both > ,_,axz* and
> h_obra® are polynomial multiples of p; so > ._,(ax + iby)z* is a (complex) poly-
nomial multiple of p. O

Proposition 106 (LADR 9.11). Let T € L(V) be an operator on a real vector
space. A real number \ € R is an eigenvalue of T if and only if it is an eigenvalue
of Tc, and

E\Te) =E\NT)e, G\ Tc) =G\, T)c.

Proof. We first show that null(7¢) = null(7)c; i.e. the null space of T¢ is the complex-
ification of the null space of T'. This is because

u+iv €null(Te) & Tu+iTv=0+0i < wu,v € null(T).
Applying this to T'— Al and (T — \I), it follows that
E()\, T)(c = HUH(T — )\])(C = Ilull(T(c — /\]) = E()\, T@)

and

G\ T)e = | Jmul(T — ADE = | null(Te — A* = G\, Te). O
k=1 k=1

It will be useful to have a notion of taking the complex conjugate of an operator.
The idea is that, for matrices, the complex conjugate of a matrix should just consist of
the complex conjugate in each entry.

For any v + iw € V¢, define v + iw := v — 4w; and for any S € £(V¢), define S by

S(u+iv) = S(u— ).

In other words, for v € V¢, we define Sv := S(v). Then

S(i(u+iv)) = S(—v + ui) = S(—v — ui) = i1S(—v — ui) = iS(u — vi) = iS(u + iv),
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so S is also C-linear. We can check the following properties:
(i) Sv = Sv for all v € V¢, by definition;

(i) S+T =S +T forall S,T € L(V¢);

(iii) for any S, T € L(V¢) and v € V¢,

so ST =5-T.

Proposition 107. Let S € L(V¢) be an operator on the complexification of a
real vector space V.. Then S = T¢ for some T € L(V) if and only if S = S.

Proof. Assume that S = S. Then, for any v € V,
Sv =87 =.97=Sv.

Therefore, S defines an operator T : V. — V., Tv + 0i := S(v + 0i). Then S = Tg,
because: for any v + iw € V¢,

S(v +iw) = Sv+iSw =Tv + iTw = Te(v + iw).

On the other hand, the conjugate of any operator T¢ is

Te(v +iw) = Te(v — iw) = T(v) —iT(w) = T(v) +iT(w) = Te(v + iw),

i.e. T(C = T(C. O

Passing to Tt can create new (nonreal) eigenvalues. The eigenspace of any nonreal
eigenvalue and its complex conjugate are closely related:

Proposition 108 (LADR 9.12). Let T € L(V) be an operator on a real vector
space and A € C. For any k € N and u,v € V,

(Te — ADF(u+iv) =0 & (Te — X)*(u —iv) = 0.

Proof. This is because

(Te — ADF(u — iv) = (Te — M)k (u + iv). O

In particular, the complex conjugation is an R-linear map between G(\, Tc) and
G (A, Tt), so the algebraic multiplicities of A and A are equal.
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Definition 55. Let 7" € L£(V) be an operator on a real vector space. The
characteristic polynomial of 7" is defined as the characteristic polynomial of
its complexification T¢.

As before, this can also be computed as the determinant det(z/ — T') (once the
determinant has been defined). The Cayley-Hamilton theorem holds: any operator T’
satisfies its characteristic equation, because T satisfies its characteristic equation.

121



Normal operators on a real space - 8/4

Real normal operators

Given a real inner product space V', the complexification becomes an inner product
space via

(V1 4 fwy, vy + iwe) = (v1,v9) + (w1, ws) + i((wl, vg) — (v, w2>>.

(You will show this on the problem set.)

Proposition 109 (LADR 9.B.4). Let T € L(V) be an operator. Then:
(1) T is self-adjoint if and only if Tc is self-adjoint;
(11) T is normal if and only if Tc is normal.

Proof. This will be clear when we show that the complexification of 7% is always (7¢)*.
For any vy, v9, wy, wy € V,
(Tc(vy +iwy), vg + dwg) = (T'(v1) + 1T (wy), va + tws)

(
= (T(v1), va) + (T(wn), ws) + 3 ((Tawn), v3) = (T(01), w))
= (00, T (v2)) + (w1, T () + (w1, T (v2)) = (01, T"u))
=

—

v1 + fwy, T*(ve) + T (ws))
vy + fwy, (T%)c (v + iws)),

(6] (T*)(C = (T(c)* []

The eigenvalues of the complexified operator T are either real or come in complex
conjugate pairs. First, we will study the complex conjugate pairs by themselves.
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Proposition 110 (LADR 9.27). Let T' € L(V) be a normal operator on a 2-
dimensional real inner product space. Assume that T is not self-adjoint. Then
the matriz of T with respect to every orthonormal basis of V' has the form

a —b
(5 9, ro
Conversely, any matriz of this form is normal and not symmetric, which implies
that T is normal and not self-adjoint.

The matrix <Z a is unique up to the sign of b, because its eigenvalues are a+1b,

which must be the two eigenvalues of T¢.

Proof. (i) If the matrix of T with respect to an orthonormal basis {e;, e} is (CCL Z) ,

then the matrix of T is (Z ccl) . Therefore,
a* +b = |Tei||* = ||Ter||* = a® + ¢,
so b = +c. Since T is not self-adjoint, b = —c and b is nonzero. Also,
(a+b)*+ (=b+d)* =|T(ex + e)[|* = IT*(ex + e2)|I* = (a — b)* + (b + d)*,
which implies that 2ab — 2bd = —2ab + 2bd, so 2ab — 2bd = 0 and therefore a = d.

(ii) It is straightforward to check that
a —b ab_a2—|—b2 0 ~(a b\ [ fa —D B
b a b a) 0 a2+ \-b a)\b a )

We can always assume that b > 0, because: if T is represented by (_ab 2) with

respect to the basis ey, es, then it is represented by (Z

_ab) with respect to the basis

€2,€1.

Proposition 111 (LADR 9.30). Let V be an inner product space and let
T € L(V) be normal. Let U be a T-invariant subspace of V.. Then U™ is also
T-invariant; U is also T*-invariant; and the adjoint of T'|y is (T%)|v.

Compare the third proof of the complex spectral theorem in the notes from 7/26.
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Proof. Since T¢ is normal, we have seen on midterm 2 that there is a polynomial
p(x) = > p_o(ax + iby)z* € P(C) such that p(Tc) = (Tc)* = (T*)c. It follows that

(1) = 3(T")e + TR) = 5(o(Te) + H(TE)) Zakﬂc,

soT* =37 axT% =: q(T) is a real polynomial expression in 7. Therefore:

(i) If U is T-invariant, then U is T*-invariant for all exponents k; so U is also
q(T) = T*-invariant;

(ii) Let Py denote the orthogonal projection onto U (which is self-adjoint). The
statement that U is T*-invariant means that Py.T* Py = 0: i.e. the U*-component of
any element T'(u), u € U is 0. Taking adjoints shows that

O — (PUJ_T*PU)* — PUTPUJ_,
which means that U+ is also T-invariant.

(iii) This is because (T|y(u),v) = (Tu,v) = (u, T*v) = (u, T*|y(v)) for all u,v € U.
[l

Proposition 112 (LADR 9.34). Let V be a real inner product space and
T € L(V). Then T is normal if and only if there is an orthonormal basis of
V', with respect to which T is represented by a block diagonal matriz of (1 x 1)-

blocks and (2 x 2)-blocks of the form (Z _ab) with b > 0.

Proof. In view of 9.27, it is clear that any matrix of this form is normal.
Assume that 7" is normal. We use induction on dim(V').
(i) If dim(V') = 1, then T is represented by a (1 x 1)-block.

(ii) If dim(V) = 2, then T is either self-adjoint (in which case it is orthogonally
diagonalizable; i.e. we get two (1 x 1)-blocks) or it is represented by a matrix of the

form <a _b> with b > 0.
b a

(iii) If dim(V') > 3, then we can find a proper invariant subspace U: if T" has a real
eigenvalue, then we can let U be the span of an eigenvector. Otherwise, if T has a
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complex eigenvalue (a + b) with complex eigenvector u + iv, then
T(u) +iT(v) = Te(u +iv) = (a +ib)(u + iv) = (au — bv) + i(bu + av)

implies that U = Span(u,v) is an invariant subspace. Since T'|y and 7|y are normal,
they can both be represented by matrices of this form; therefore, T' can be represented
by a matrix of this form. O]

Real isometries

We proved earlier that (T*)c = (T¢)* for any operator T € L(V') on a real inner product
space. In particular, T is an isometry if and only if 7t is an isometry.

Proposition 113 (LADR 9.36). Let S € L(V) be an operator on a finite-
dimensional real inner product space. The following are equivalent:

(1) S is an isometry;

(11) There is an orthonormal basis of V', with respect to which S is represented by
a block-diagonal matriz consisting of (1 x 1)-blocks +1 and (2 x 2)-blocks of the

form
cos(f) —sin(6)
(sin(@) cos(6) ) 1 19 (U

In other words, every isometry is a combination of rotations (the blocks <

and reflections (the blocks (—1)) performed in sequence.

Proof. Any isometry S is normal (it commutes with its adjoint S* = S71), so it
has a representation with respect to an orthonormal basis by a matrix consisting

of (1 x 1)-blocks and (2 x 2)-blocks of the form - , with b > 0. Also, the

a
b
complexification S¢ is an isometry on Vg, so its eigenvalues all have absolute value

1. This forces the (1 x 1)-blocks to be £1, and the (2 x 2)-blocks (Z _ab) have

eigenvalues a & ib, so a* + b* must be 1. This means that a = cos() and b = sin(#) for
some 0 € (0, ).

On the other hand, the blocks (£1) and Z _ab have inverse equal to their trans-

pose, so this is true for the entire matrix of S; therefore, S is represented by an isometry
with respect to an orthonormal basis of V', so S itself is an isometry. m
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Trace - 8/8

Alternating forms

The trace of a matrix is the sum of its diagonal: for example,

tr =1+5+9=15.

~ =
co ot DN
© o W

It turns out that the trace is invariant under similarity: tr(PAP~!) = tr(A) for any
invertible matrix P. This implies that the trace is the same under change of basis, so we
expect that we can define it without needing to choose a basis and work in coordinates.

On a complex vector space, the trace turns out to be the sum with multiplicites of
the eigenvalues; but this definition is difficult to work with and is not valid over other
fields. We will give a basis-free definition using the concept of alternating forms, which
will also be useful tomorrow to talk about the determinant. Alternating forms will not
be tested on the exam.

Definition 56. Let V' be a vector space over F and let & € N be a natural
number. An alternating k-form on V' is a map

w:Vx.xV—F
—_——

k times

with the following properties:

(i) w is linear in every component.

(i) w is alternating: if the list (vq, ..., v;) contains two copies of the same vector,
then w(vy, ..., vx) = 0.

Example 70. The determinant

aq a9 L ay az\ .
CL)( (b1) s <b2> ) = det <b1 b2> = a1b2 &le

is an alternating 2-form on R?: it is linear in each column vector, and if the column vec-
tors are equal, then the determinant is 0. The determinant is the example of alternating
form that you should always have in mind.

126



These are called alternating because it alternates between positive and negative
whenever we swap the order of two vectors. You are probably familiar with this property
of the determinant. It follows from the calculation

0=w(,...v+w,..v+w,..,vg)
= W(V1, ey Uy oy Uy ooy U) + W(01, ey Uy W, V)
F W(V1, ey Wy ey Uy ey U) F W(V1 ey W,y ey W, ey V)

= WV, ey Uy ooy Wy ooy V) + W01, ey Wy ey Uy V),

SO
WV ey Uy ey Wy ey V) = —wW(V1, ey Wy oy U, oy V).

Proposition 114. Let V' be a vector space over F and k € N.
(i) The alternating k-forms on V' form a vector space, denoted QF(V').
(ii) If V is finite-dimensional with n = dim(V'), then

dim QF(V) = (Z)

is the binomial coefficient () = ﬁlk), = #{subsetsof {1, ...,n} of size k}.

In particular, Q"(V') is 1-dimensional.

Proof. Calculating the dimension of Q¥(V) rigorously will take too much time. The idea
is that, if vy, ..., v, is a basis of V, then we can define an alternating form w € Q¥(V)
uniquely by specifying the values w(v;,,...,v;, ), where {iy,...,ix} € {1,...,n} runs
through the subsets of size k. O]

Trace

The trace of an operator is defined similarly to the dual map.

Proposition 115. Let V' be an n-dimensional vector space. Let T € L(V) be an
operator. Then

tr(7) : Q"(V) — Q™ (V),

tr(T)w(vy, ..y Un) = w(T1, V2, .y V) + w(v1, TV, .oy V) + ... + w(v1, Vo, ..., TUy)

= w(v, ey TV, -, Uy)
k=1

15 a well-defined linear map, called the trace of T
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Proof. 1t is not hard to see that
w(Tvy, vay .oy V) + wW(V1, TV2, ooy V) + ... + w(v1, Ve, ..., Ty)

is linear in every component. If v; = vy, then most of the terms above are 0, since they
contain two equal vectors; we are left with

W(V1, ooy TGy ey Uy oy Up) + (U1, ooy Vg oo, TR, -, Up)

= W(V1, e, TVj,y oy Uy ooy Un) + W01, ooy Uy o, TG, o, V)

which is also 0 because w(vy, ..., vj, ..., Tvj, ..., v,) results from w(vy, ..., Tvj, ..., v;, ..., Uy)
by swapping the vectors in the jth and kth positions. O

Since Q™(V) is 1-dimensional, the map tr(7") is actually multiplication by a scalar.
The trace of T" will usually refer to that scalar.

1 2
3 4

w(<‘c”) , (Z)) — ad — be

from earlier. If ey, ey is the standard basis of R?, then

Example 71. Let T' = ( ) € L(R?). We consider the alternating 2-form

tr(T)w(er, ea) = w(Teq, ez) + w(er, Ty) = det (:13 (1)) + det ((1) i) =14+4=5,

and w(ey, e2) = 1; so tr(T") = 5.

Proposition 116 (LADR 10.13, 10.16). Let T' € L(V') and let vy, ..., v, be a basis
of V.. Let M(T) = (a;j);; be the matriz of T. Then tr(T) = a11 + as + ... + any
1s the sum of the diagonal of that matrix.

This means we have recovered the definition at the beginning of these notes.

Proof. After writing Tvy = aj1vy + ... + an1v,, we see that
w(Tv1, Vg, .oy V) = a11W(V1, V2, ooy V) + oo + Q1w (Vpy, V2, ..oy V) = aiw(vy, Ve, .., Uy)

for any w € Q"(V), since all but the first term in this sum contain w evaluated at two
copies of the same vector. A similar argument shows that

W1, ey TR, oey Uy) = appw (V1 .., Uy)
for all indices k, so
tr(T)w(v1, .oy Un) = (11 + oo + Qpp)w (V15 -0y Un),
ie. tr(T) = a1 + ... + app. O
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In particular, the trace is also the sum of the eigenvalues of T, if V' is a complex
vector space:

Proposition 117 (LADR 10.16). Let T € L(V) be an operator on a finite-
dimensional complex vector space. Then tr(T) is the sum of the eigenvalues of
T, with algebraic multiplicities.

Proof. Choose a basis of T" with respect to which 7' is represented by its Jordan normal
form. Then the diagonal of that matrix consists of exactly the eigenvalues of 7', with
algebraic multiplicities counted, and the previous proposition shows that tr(7") is the
sum of that diagonal. O

has eigenvalues

W DN =
O =~

1
Example 72. The complex matrix A = | 1
1

e — 4+ 2V/TT cos <arctan(\/ 1036)5/35) + 27k

In particular, \y = 10.603..., \; = 0.151...; Ay = 1.245... It is difficult to calculate this
by hand. However, we easily calculate that their sum is

), k=0,1,2.

The following theorem is much easier to prove using the definition as the sum of the
diagonal than the definition as the map on alternating forms, or the sum of eigenvalues:

Proposition 118 (LADR 10.14). Let S,T € L(V') be operators. Then

tr(ST) = tr(T'S).

Proof. Assume that S is represented by A = (a;;); ; and T is represented by B = (b;;);
with respect to some basis of V. Then

n n n

tI‘(ST) = Z(AB)kk = Z Zaklblk = Z Zblkakl = Z(BA)” = tI‘(TS) []

k=1 k=1 I=1 =1 k=1 =1

Be careful: this only means that the trace is invariant under cyclic permutations of
1 0 11 11
‘ 1 = p— prm—
operators! For example, if A (1 1>, B <1 0) and C (0 1) , then

tr(ABC) = tr(BCA) = tr(CAB) = 4,
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while
tr(ACB) = tr(CBA) = tr(BAC) = 3.

An important corollary: on finite-dim. vector spaces over Q,R or C, there are no
operators S, T such that ST —T'S = I. This is because tr(ST —T'S) = 0 but tr(/) # 0.

Trace on an inner product space

On an inner product space, the trace is easier to write:

Proposition 119. Let V' be a finite-dimensional inner product space with or-
thonormal basis ey, ...,e,. Let T € L(V). Then

n

tr(T) = Y (Tex,ex).

k=1

Proof. Since
Te; = (Tej,er)er + ... + (Tej, en)en, j€A{L,...,n},

it follows that the representation matrix of T with respect to the basis {ey,...,e,} is
((Tej, €i))ij. Therefore, the trace is the sum of the diagonal of this matrix:

n

tr(T) = Y (Tey,ex). O

k=1

This has several useful applications. One is an easy estimate of the largest eigenvalue
of a matrix (a special case of Schur’s inequality):

Proposition 120. Let A = (a;;):; be a square complex matriz and let X be an
eigenvalue of A. Then |A| < /37, 5 |ai;|?.

Proof. Let e; be an eigenvector of A for A, such that |le;|| = 1. Extend e; to an
orthonormal basis ey, ..., e, of F". Then:
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W e P = X s
i i
= tr(AA")
_ (A A)

= Z<A*A€k, €k>
=l

= Z<A€k, A€k>
k=1
= AP+ 1 Ae)®

k#1
> A%
Example 73. The largest eigenvalue of
111
1 2 4
139

18

tan(+/106/35
4 + 2\/ﬁcos (arc an( / )

= 10.603...
5 ’

while the bound we have found above is

VIZH12 4124124224424+ 124+ 324+ 92 =115 = 10.724...

Not bad. (Of course, it won’t always be this close.)
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Determinant - 8/9

Determinant

Like yesterday, we will first give a basis-free definition of the determinant using alter-
nating forms, and then discuss the practical aspects of the determinant by studying it
on matrices.

Proposition 121. Let V be an n-dimensional vector space and let T € L(V') be
an operator. Let w € Q"(V) be an alternating form. Then

(v, ..., y) = w(Tvy, ..., Tvy,)

defines an alternating form.

Proof. Since T is linear and w is linear in each component, it follows that ¢ is linear in
each component. Also, if v; = vy, for any indices j # k, then T'v; = Tvy, and therefore

w(Tvy, ..., Tv,) = 0;

so 1 is alternating. O]

Since Q™(V) is 1-dimensional, it follows that there is a scalar, called the determi-
nant det(7), such that

det(T)w(v1, ..., vp) = w(Twvy, ..., Tv,), we Q" (V).

Example 74. Recall that on R2, there is a nonzero alternating 2-form w defined by

w( 1 T2 >—x —x
v )\ 1Y2 2Y1-

In particular, w(ej,ex) = 1. If T'= (;) i) , then

det(T) = det(T)w(er, e2) = w(Ter, Tes) = @) , @ )=-2
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Proposition 122 (LADR 10.40). Let S,T € L(V) be operators. Then

det(ST) = det(S) - det(T).

Proof. For any alternating form w € Q"(V) and vy, ..., v, € V,

det(ST)w(v1, ..., V) = w(STvq, ..., STvy)
= det(S)w(Tvy, ..., Tv,)
= det(S)det(T)w(vy, ..., vy,),

so det(ST) = det(S)det(T). O

Permutations and the Leibniz formula

Definition 57 (LADR 10.27). (i) A permutation ¢ on n numbers is a bijective
function o : {1,....,n} — {1,...,n}.

(ii) The sign sgn(o) of a permutation o is (—1)¢, where e number of pairs of
indices (j, k) such that j < k but o(j) > o(k).

The permutation o can be written out as the list (o(1), ..., 0(n)).

Example 75. The sign of the permutation (5,3,2,4,1) is 1, because: the pairs of
elements that are not in order in the list (5,3,2,4,1) are

(5,3),(5,2),(5,4),(5,1),(3,2),(3,1),(2,1), (4,1).
There are 8 of these.

Every permutation is made up of cyclic permutations. For example, (5,3,2,4,1)
consists of the cycles
l1=-5—=1=5—=1—..

and
2—-3—=2—=3—=2— ..

and
4 -4 —4—-4—4— ..

The length of each cycle is the number of distinct numbers it contains. We write the
cycles as tuples without commas: here, they are (1 5), (2 3) and (4).

A faster way to calculate the sign of the permutation is as follows: we multiply —1
for every cycle of even length. For example, (5, 3,2,4, 1) consists of two cycles (15) and
(23) of length two and one cycle (4) of length 1; the sign is (—=1) - (—1) = 1.
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Proposition 123. Let w € Q"(V) be an alternating form. For any permutation
o and vy, ...,v, €V,

W(Ve(1)s - Vo(n)) = 580(0) - w(V1, ..., Vp).

Compare to LADR 10.38.

Proof. w is alternating, so every time we swap two vectors v; and vy, the sign changes:

W(UL, eey Ujy vey Uy ery Up) = —W(VL, wovy Uk, ovy Uy oeny Up ).

More generally, applying a cyclic permutation of length ¢ can be understood as a se-
quence of £ — 1 swaps: for example, the cyclic permutation

1—2—3——4—1—2—3—4—1— ..

i.e. the permutation

(1,2) in that order.

; g Z ;L), is equivalent to swapping (3,4), then (2,3), then

This implies that, if o is a cyclic permutation of length ¢, then

£—1

W(Ve()s -y Vo)) = (=1) w(v1, ..., Un).

Here, (—1)*1 is 1 if o has odd length and it is 1 if o has even length. The claim follows
by splitting o into its cycles, since sgn(o) is the product of (—1)*~* as ¢ runs through
the lengths of the cycles of o. O]

Using this notation, we can write down an explicit formula for the determinant. In
practice, it is extremely slow, and therefore rarely used; the most important consequence
is probably that the determinant is a polynomial expression in the entries of a matrix
and it is therefore continuous, differentiable, etc.

Proposition 124 (LADR 10.33). Let T € L(V). Let vy, ...,v, be a basis of V
and assume that the representation matriz of T is (a;j); ;. Then

det(T) = ZSgH(O’) . ag(l),lao(m’g...ag(n)m.

Proof. Each Tv; is the linear combination Tw; = > 7 | a;;v;. Using linearity in each
component, for any w € Q"(V'), we can write

n n n n
w(T?Jl,...,Tvn):w( E @iy 1Viy s s E ainnvin) = E E Qi1 ee Qi (Vig y ooy Vs, ).

i1=1 in=1 i1=1 in=1
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Note that w vanishes whenever we plug in two copies of the same vector; so this sum is
actually only over those lists (i1, ..., 7,) that are permutations: i.e.

det(T)w(vl, 500 Un) = Z ao(l)l...ao(n)nw(vg(l), so0g Ug(n)).

Using the previous result, we can rewrite this as

det(T)w(vy, ..., vp) = Z SEN(0) - Go(1),100(2) 2+ Go(n)nW (V1 -y Un),

(o)

so det(T) = >, sgn(0) * Ao(1),106(2),2---Ao(n)n- 0

Example 76. You may be familiar with this formula in the case of (3 x 3)-matrices
under the name Sarrus’ rule: the determinant of a (3 x 3)-matrix is calculated by
copying the left two columns to the right of the matrix and adding diagonally as

+ o+

or written out,

11 daiz2 A3
det | a21 a2 ag3 | = a11a22a33+a12023031+013021A32— 031 A22013—A32023011 — 033021 12.
a31 dasz2 a33

Here, the upper left - lower right diagonals correspond to the permutations
(1,2,3), (3,1,2), (2,3,1)

with positive sign +1 and the lower left - upper right diagonals correspond to the
permutations
(3,2,1), (1,3,2), (2,1,3)

with negative sign —1.

The most practical way to calculate determinants is via Gaussian elimination (row
reduction). Some matrices (those with a lot of zero entries) can be calculated quickly
by expanding along a row or column. You have probably seen this in Math 54.
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Determinant and eigenvalues

Proposition 125 (LADR 10.42). Let T' € L(V) be an operator on a complex
vector space. Then det(T) is the product of the eigenvalues of T, counted by
algebraic multiplicity.

Proof. Let A = (a;;);; be the Jordan normal form of T'. Since a;; = 0 whenever i > j,
the only nonzero terms in the Leibniz formula

det(T) = ZSgl’l(O') *Qg(1),1---Qo(n),n

must have (1) = 1; and therefore ¢(2) = 2, and so on until o(n) = n. In other words,
the only o resulting in a nonzero term is the identity, and the determinant is just the
product along the diagonal:

det(T) = a1 * ... * App-

Finally, note that the Jordan normal form has the eigenvalues along the diagonal, each
counted as often as their algebraic multiplicity. O]

The same argument shows that the determinant of any upper-triangular matrix is
the product along the diagonal.

were

©

11
Example 77. Recall that the eigenvalues of [ 1 2
1 3

o = 4 + 211 cos = 10.603...

(arctan(\?{m/iﬁ))

tan(+/106/35) + 2
Ay = 4 4 2¢/11 cos (arc an(v106/35) + W) — 0.151...

3
tan(v/106/35) + 4
Ay = 4 + 211 cos (arc an( 3 /35) + ”) — 1.245...

To multiply these together directly would probably involve some mysterious and com-
plicated trig identities. However, we know that the result will be

1 1 1 1 1 1 1 1
det |1 2 4] =det|]0 1 3] =det|0 1 = 2.
1 39 0 2 8 00

N W
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