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1. Some Definitions

Differential equations arise in myriad fields, from physics to engineering. Our journey
into this theory begins with constant coefficient homogeneous linear second order differen-
tial equations. These are differential equations of the form:

(1.1) ay′′(t) + by′(t) + cy(t) = 0, a, b, c ∈ R, a 6= 0.

We are looking for functions y(t) from the real numbers to the real numbers that solve the
above equation. Let’s go over each of the key words in the somewhat protracted name for
these things:

• Constant coefficient: The coefficients in front of y′′(t), y′(t) and y(t) in (1.1)
are constant real numbers a, b, c that do not depend on t.
• Homogeneous: The right hand side of (1.1) is 0; this is precisely the way we

used this term in linear algebra.
1
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• Linear: The solutions to (1.1), also called the solution space, form a vector space.
Indeed, suppose that y1(t) and y2(t) both solve (1.1). For constants c1, c2 ∈ R,
one can verify using properties of the derivative that

a(c1y1(t) + c2y2(t))
′′ + b(c1y1(t) + c2y2(t))

′ + c(c1y1(t) + c2y2(t)) = 0.

In other words, c1y1(t) + c2y2(t) solves (1.1) as well. The solution space to (1.1)
contains the zero function y(t) ≡ 0 and is also closed under linear combinations.
We can thus think of it as a vector space.1

• Second order: The highest derivative in (1.1) is the second derivative.

Before we talk about how to solve (1.1), we describe the structure of the solution space.
Recall that two functions y1(t) and y2(t) are linearly independent when neither of them is
a constant multiple of the other.

Theorem 1.1. The solution space to (1.1) is a two-dimensional real vector space.

The proof is omitted. But why should we expect this to be the case? It lies in the
fact that we are solving a second order differential equation; we then have two degrees of
freedom. We will return to this point later when discussing intial value problems.

Theorem 1.1 tells us that if we find any two linearly independent solutions of (1.1) y1(t)
and y2(t), then these two functions form a basis of the solutions space and all solutions to
the differential equation are of the form cy1(t) + cy2(t). This is a general solution to
(1.1). We will now describe a strategy for finding these general solutions.

2. Finding General Solutions in the Homogeneous Case

Here is the algorithm for finding general solutions in the homogeneous case. Almost no
motivation will be given. Let’s start with (1.1), where we no longer write the “(t)” for
brevity:

ay′′ + by′ + cy = 0, a, b, c ∈ R, a 6= 0.

The key idea is to form the auxiliary equation . This is a polynomial equation formed
by converting y′′ to r2, y′ to r, and y to 1, i.e., we convert the nth derivative to the nth

power for n = 0, 1, 2. So the auxiliary equation is:

(2.1) ar2 + br + c = 0.

We solve (2.1) using the quadratic formula to obtain two roots

r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

Depending on the discriminant b2 − 4ac, there are three cases to consider:

(1) Two Distinct Real Roots (b2 − 4ac > 0): There are two distinct real roots r1
and r2. We can say that r1 and r2 are simple roots.

(2) One Real Root (b2− 4ac = 0): In this case r1 = r2 and we can say that we have
a double root.

1You might have realized that we’ve only verified the subspace criterion, so what is the larger space?
One can take it to be the space of infinitely differentiable functions form R to R, labelled C∞(R).
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(3) Complex Roots (b2 − 4ac < 0): In this case r1 and r2 are two distinct complex
numbers.2

Let’s handle each of these cases separately.

2.1. Two Distinct Real Roots. Suppose that r1 and r2 are two distinct real roots of
the auxiliary equation (2.1). Then we write down the general solution as:

y(t) = c1e
r1t + c2e

r2t,

where {er1t, er2t} is the basis for our solution space and c1 and c2 are any real numbers.

Example 2.1. Consider the differential equation

y′′ + 3y′ + 2y = 0.

The auxiliary equation is

r2 + 3r + 2 = 0,

which factors into

(r + 2)(r + 1) = 0.

Our two roots are thus r1 = −2 and r2 = 1. The general solution is

y(t) = c1e
−2t + c2e

−t.

2.2. One Real Root. Suppose that r is the unique real root that solves the auxiliary
equation (2.1). Then we write down the general solution as

y(t) = c1e
rt + c2te

rt,

where {ert, tert} is the basis for our solution space and c1 and c2 are any real numbers.
Notice the factor of t in the second basis function; this is a theme that will show in later
when we study the method of undetermined coefficients for non-homogeneous differential
equations.

Example 2.2. Consider the differential equation

y′′ + 2y′ + 1y = 0.

The auxiliary equation is

r2 + 2r + 1 = 0,

which factors into

(r + 1)2 = 0.

Our double root is r = −1. The general solution is

y(t) = c1e
−t + c2te

−t.

2In fact, they are conjugate to each other.
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2.3. Complex Roots. Suppose that r1 and r2 are the complex roots that solves the
auxiliary equation (2.1). The two resulting roots are conjugate to each other; they will
have the form r1 = α+ iβ and r2 = α− iβ for α, β ∈ R. Then we write down the general
solution as

y(t) = c1e
αt cos(βt) + c2e

αt sin(βt),

where {eαt cos(βt), eαt sin(βt)} is the basis for our solution space and c1 and c2 are any real
numbers.

Example 2.3. Consider the differential equation

y′′ − 4y′ + 7y = 0.

The auxiliary equation is

r2 − 4r + 7 = 0.

Solving using the quadratic equation, we obtain r1 = 2 +
√

3i and r2 = 2 −
√

3i. The
general solution is

y(t) = c1e
2t cos(

√
3t) + c2e

2t sin(
√

3t).

3. Initial Value Problems

3.1. Background. In the preceding discussion we observed that all general solutions of
equation (1.1) are of the form

y(t) = c1y1(t) + c2y2(t)

for two linearly independent solutions y1(t) and y2(t). A initial value problem (IVP)
consists of an equation of the form (1.1) as well as two pieces of information that uniquely
pin down the constants c1 and c2. This information takes the form of specifying y(t0) and
y′(t0) for some t0 ∈ R.

To gain some intuition for these problems, let’s consider a simpler case. Suppose we had
the differential equation

(3.1) y′ + 3y = 0.

We can think of y as position and y′ as velocity. For any time t ∈ R, this equation tells
us precisely what the velocity y′(t) of our particle is if we know its position y(t). Suppose,
for example, that we know y(0) = 3. Then y′(0) = −9, and we know that y(0.001) at
time t = 0.001 going to be somewhere around 3 + (−9)(.001) = 2.991. This is only an
approximation, but we can continue this process to have a good idea of where the particle
is going to be at time t, when all we knew was the governing equation (3.1) and y(0) = 3.
But in fact calculus lets us make this approximation a reality: we can convince ourselves
that if we infinitesimally small time steps forward, we can in fact know the location of
the particle perfectly at any future (and past) time given only (3.1) and y(0) = 3. The
evolution the particle are entirely governed by the above differential equation; the initial
value y(0) = 3 simply gives us the starting state.

That was first-order case; we needed one piece of information to specify the particle’s
trajectory. In the second order case that we are considering, we have a formula for the
acceleration of our particle in terms of its velocity and position. In a totally analogous
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manner, knowing y(0) = 3 and y′(0) = 4, for example, sets the starting state; the rest of
the dynamics are totally determined by the second order differential equation (1.1).

This discussion leads us to the following theorem.

Theorem 3.1. For any real numbers a 6= 0, b, c, t0, Y0, Y1, there is a unique solution to
the initial value problem (IVP)

(3.2) ay′′ + by′ + cy = 0, y(t0) = Y0, y′(t0) = Y1.

The solution is valid for all time t ∈ R.

In the next subsection, we will give the algorithm for solving an IVP, which builds on
what we’ve done for the general solution.

3.2. Solving an IVP. Here we give the algorithm for solving an initial value problem
(3.2). Here it is:

(1) Find the general solution for ay′′ + by′ + cy = 0. Say it is of the form y(t) =
c1y1(t) + c2y2(t).

(2) Plug in the initial value conditions (one must compute y′(t) to apply y′(t0) = Y1)
and obtain a system of two equations in c1 and c2. Solve this system for c1 and
c2.

3

Perhaps this is best illustrated in an example.

Example 3.2. Consider the IVP

y′′ + 2y′ + y = 0, y(0) = 3, y′(0) = 4.

We first find the general solution to y′′ + 2y′ + y = 0. But this is the same equation in
Example 2.2, so we know that we have the general solution

y(t) = c1e
−t + c2te

−t.

Let’s first calculate the derivative:

y′(t) = −c1e−t + c2(e
−t − te−t).

Plugging in y(0) = 3 gives us

3 = y(0) = c1.

Plugging in y′(0) = 4 gives us

4 = y′(0) = −c1 + c2.

We thus see that c1 = 3 and c2 = 7, and so our solution is

y(t) = 3e−t + 7te−t.

3We may end up with some very ugly looking things like e−3 and cos(3) in our system. This is annoying,
but remember that these will always simply be numbers and can be manipulated as such.
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4. The Wronskian

Suppose we have two solutions y1(t) and y2(t) of the standard homogeneous equation
(1.1). How do we know that they form a basis for the two-dimensional solution space? We
must have a method of testing whether or not they are linearly independent. Thankfully,
there is a way, using the Wronskian.

Definition 4.1. Let y1(t) and y2(t) be two functions. The Wronskian is the following
determinant:

W (y1, y2) = det

(
y1(t) y2(t)
y′1(t) y′2(t)

)
= y1(t)y

′
2(t)− y2(t)y′1(t).

Notice that the Wronskian is a function of t, not a number. The key property of
the Wronskian is the following result.

Proposition 4.2. Suppose that y1(t) and y2(t) solve the exact same differential equation
of the form (1.1). Then y1(t) and y2(t) are linearly dependent if and only if the Wronskian
is the zero function, or in other words, the Wronskian is 0 for all t ∈ R. Phrased another
way, y1(t) and y2(t) are linearly independent if and only if the Wronskian is not 0 for all
t ∈ R, i.e., there is some t0 ∈ R where the Wronskian does not vanish.

This result should not seem too far out of left field: in linear algebra the determinant
vanishing is precisely the condition for when the column vectors of a square matrix are
linearly dependent.

Example 4.3. Suppose that y1(t) = e3t and y2(t) = te3t.4 We then have

W (y1, y2) = y1(t)y
′
2(t)− y2(t)y′1(t)

= (e3t)(e3t + 3te3t)− (te3t)(3e3t)

= e6t(1 + 3t)− e6t(3t)
= e6t.

But e6t is not the zero function, so y1 and y2 are linearly independent.

The hypothesis that y1 and y2 are solutions to the exact same differential
equation is absolutely critical. If f(t) = t2 and g(t) = t · |t|, one can check that
W (f, g) = 0 on all of R, but f and g are not linearly dependent, contrary to what we saw
above. Again, this is due to the fact that f and g do not solve the same homogeneous
differential equation. The best we can do in the general case if the following.

Proposition 4.4. Suppose f and g are any two differentiable functions on R. If f and g
are linearly dependent on R, then W (f, g) is the zero function. Equivalently, if W (f, g) is
not the zero function, i.e., there is some t where W (f, g)(t) 6= 0, then f and g are linearly
independent.5

4This example could arise in the double root case.
5This is the contrapositive of the previous statement. Try to figure out why they’re equivalent if it is

not immediately clear.
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Here we are letting f and g be literally any random differentiable functions; they do not
have to solve the same second order differential equation. At the risk of being unbearably
repetitive, we emphasize that one cannot conclude that f and g are linearly dependent if
their Wronskian is the zero function for any old differentiable functions f and g.

We state an interesting result. If there’s time, try to prove it before reading the solution.

Exercise 4.5. Suppose that f(t) and g(t) are real functions such that their Wronskian
W (f, g) is the zero function, i.e., W (f, g)(t) = 0 for all t ∈ R. If g(t) 6= 0 for all t, show
that f and g are linearly dependent.

Proof. The functions f(t) and g(t) being linearly independent means there is a constant c
such that f(t) = cg(t) for all t ∈ R. Since g(t) is never zero, this is equivalent to having
f(t)/g(t) = c for all t ∈ R. From calculus, this statement is the same as saying that
(f/g)′(t) = 0 for all t ∈ R. So we must show that the derivative of f/g vanishes for all t.
Compute using the quotient rule:(

f(t)

g(t)

)′
=
f ′(t)g(t)− g′(t)f(t)

g(t)2
=
−W (f, g)(t)

g(t)2
=

0

g(t)2
= 0

for all t as W (f, g) is the zero function by hypothesis. �

5. Non-Homogeneous Differential Equations

5.1. Background. Here we begin our analysis of non-homogeneous second order constant
coefficient linear differential equations. These take the form

(5.1) ay′′(t) + by′(t) + cy(t) = f(t), a, b, c ∈ R, a 6= 0.

The only difference between this equation and (1.1) is the presence of f(t). Before diving
into methods of solving this problem, we first make some general observations.

First, let’s recall something from linear algebra. Let A be an m × n matrix, ~x ∈ Rn,

and ~b ∈ Rm. Solving the inhomogeneous matrix-vector equation A~x = ~b can be split into
two steps:

(1) First solve the homogeneous, or complementary equation A~x = ~0. Say the solution

set is of the form c1~v1 + · · ·+ck~vk for some linearly independent vectors {~1, . . . , ~k},
and for any real numbers c1, . . . , ck.

(2) Find any solution to A~x = ~b. Let’s call the solution ~x∗.

(3) The full solution to A~x = ~b is then given by

c1~v1 + · · ·+ ck~vk + ~x∗.

The reason why this works is because matrix multiplication by A is a linear operation.
But in our case we also have a linear differential equation. Hence we can apply the exact
same strategy, basically verbatim, to solve the inhomogeneous differential equation:

(1) First solve the homogeneous, or complementary equation

ay′′ + by′ + cy = 0.

Say the general solution is of the form yc(t) = c1y1(t) + c2y2(t).
(2) Find any solution to ay′′ + by′ + cy = f . Call this particular solution yp(t).
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(3) The general solution to the differential equation is then given by

y(t) = yc(t) + yp(t) = c1y1(t) + c2y2(t) + yp(t).

In practice, it’s finding the particular solution yp(t) that is somewhat delicate. We start
exploring these methods in the upcoming subsections.

5.2. Method of Undetermined Coefficients. Here we discuss a method of finding the
particular solution yp(t) for (5.1) that works for particular forms of f(t). The idea is as
follows: there are certain functions whose first and second derivatives are “essentially” of
the same form. In particular, the derivative of a polynomial is a polynomial, the derivative
of an exponential is an exponential, and the derivative of sin t and cos t are cos t and − sin t,
respectively. We can use this fact to make an educated guess for yp(t).

Example 5.1. Suppose we wish to find a particular solution for the non-homogeneous
differential equation

y′′ + 3y′ + 2y = e4t.

Given the form on the right hand side, we can make an educated guess yp(t) = Ae4t for
some constant A. Plugging this guess into the equation gives us

16Ae4t + 12Ae4t + 2Ae4t = e4t.

Dividing by e4t, which is never zero, we end up with 30A = 1, so A = 1
30

. Hence yp(t) =
1
30
e4t.
Let’s now consider a modified version of this problem where we solve

y′′ + 3y′ + 2y = e−2t.

Following the above procedure, we take an educated guess Ae−2t. Plugging in on both
sides gives us

4Ae−2t − 6Ae−2t + 2Ae−2t = e−2t.

Dividing by e−2t, we get 4A − 6A + 2A = 0 on the left and side and 1 on the right hand
side. What went wrong was that e−2t, as we saw in Example 2.1, is in fact a solution to
the (homogeneous) complementary equation

y′′ + 3y′ + 2y = 0.

Perhaps a better way to say the same thing: the number −2 is a solution to the auxiliary
equation r2 + 3r + 2 = 0.

To fix this, we will throw in an extra factor of t into our guess, not unlike when the
auxiliary equation for the homogeneous equation has a double root (Example 2.2). Our
new guess is Ate=2t. Plugging this in and simplifying in fact gives

−Ae−2t = e−2t,

so we can take A = −1. Hence our particular solution is yp(t) = −te−2t. For completeness
the full solution to the problem is then

y(t) = yc(t) + yp(t) = c1e
−2t + c2e

−t − te−2t.

In the previous example we saw that there is some extra work to do when our guess
overlaps with the solutions to the complementary equation. Here’s another example:
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Example 5.2. Consider the differential equation

y′′ + 2y′ = 9.

To find a particular solution, we rewrite the right hand side to get

y′′ + 2y′ = 9e0t.

This might seem silly, but it lets us relate the structure on the left hand side to the
solution to the complementary equation. Indeed, perhaps our naive guess for yp(t) would
be Ae0t = A, some constant.

But the auxiliary equation associated to the homogeneous equation is r2 + 2r = 0. As 0
is a simple (degree one) root and we are dealing with Ae0t, we have one degree of “overlap”
so we should multiply our guess by t. Try plugging in Ae0t; we would obtain 0 = 9, a
contradiction. Yes, we are just dealing with constants here. But writing things in terms
of e0t lets us relate this example to the previous one.

If we guess Ate0t = At as the particular solution, we can plug this into the equation to
obtain 2A = 9 and A = 9

2
. Hence the particular solution is yp(t) = 9

2
t.

5.3. An Algorithm for Guessing Particular Solutions. With these examples out of
the way, we can list a general algorithm for solving these differential equations. What
will truly matter are the roots of the auxiliary equation, and whether we have
a single or double root. If the roots “match” with f(t) on the right hand side, then we
must multiply by t or t2 to correct things.

Let’s cover the two basic cases (lifted directly from the book):

5.3.1. Case 1. Suppose first we have a differential equation of the form

ay′′ + by′ + cy = Cpm(t)ert,

where pm(t) is a degree m polynomial in t and r is a real number. Notice that this includes
the case r = 0, where the right hand side would only be a polynomial. Then our guess will
be the following:

yp(t) = ts(Amt
m + · · ·+ A1t+ A0)e

rt.

Here {A0, . . . , Am} are real numbers. Notice that our guess is a polynomial of degree
m multiplied by the exponential ert, but we also have the correction term ts in case of
“overlap” with solutions of the homogeneous equation.

The value of s is determined solely by whether what degree root r is in the associated
auxiliary equation ar2 + br + c = 0. Indeed, we have

(i) s = 0 if r is not a root of the associated auxiliary equation;
(ii) s = 1 if r is a simple root of the associated auxiliary equation; and

(iii) s = 2 if r is a double root of the associated auxiliary equation.

Note: nothing about s depends on the polynomial term pm(t).

5.3.2. Case 2. Suppose now we have a differential equation of the form

ay′′ + by′ + cy =

{
Cpm(t)eαt cos(βt)

Cpm(t)eαt sin(βt)
,
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where once again pm(t) is a polynomial of degree m. Then our guess will be the following:

yp(t) =ts(Amt
m + · · ·+ A1t+ A0)e

αt cos(βt)

+ ts(Bmt
m + · · ·+B1t+B0)e

αt sin(βt)

Here {A0, . . . , Am} and {B0, . . . , Bm} are real numbers. Notice that even if we have only
one of cos(βt) or sin(βt), our guess requires both of them. This is because the derivative
sin is cos, which may appear when we plug our guess in.

Once again there is a correction term ts. Again, the value of s depends on the roots of
the associated auxiliary equation ar2 + br + c = 0. Here is the rule:

(i) s = 0 if r = α + iβ is not a root of the associated auxiliary equation; and
(ii) s = 1 if r = α + iβ is a root of the associated auxiliary equation.

Again, the exponent s on the correction term does not depend on the polynomial term at
all. The reason why we do not have an s = 2 case is because complex roots of the auxiliary
equation come in conjugate pairs.

In general, the form of f(t) might be the sum of multiple terms of the form we studied
above. In that situation our guess is simply the sum of our guesses for each term.

Example 5.3. Consider the non-homogeneous equation

y′′ − y′ − 2y = 6e2t.

The associated auxiliary equation is r2− r− 2y = 0, which factors into (r− 2)(r+ 1) = 0.
The two roots are r1 = 2 and r1 = −1. But on the right hand side, we have 6e2t, so we
have one degree of “overlap.” Looking at the form in Case 1 (5.3.1), we see that our guess
should be

yp(t) = Ate2t.

If we plug this in and calculate (yp(t))
′′ − (yp(t))

′ − 2yp(t) = 6e2t, we end up with A = 2.
Hence the particular solution is yp(t) = 2te2t.

From above, we see that the complementary solution is yc(t) = c1e
2t + c2e

−t. Then the
general solution is:

y(t) = yc(t) + yp(t) = c1e
2t + c2e

−t + 2te2t.

Example 5.4. Consider the non-homogeneous equation

(5.2) x′′(t)− 4x′(t) + 4x(t) = te2t.

We first find the roots of the associated auxiliary equation and solve for the complementary
solution. We reduce to r2 − 4x + 4 = 0, which factors as (r − 2)2 = 0, a double root. We
get xc(t) = c1e

2t + c2te
2t.

Let’s now make a guess for yp(t). We are in Case 1 (5.3.1). Using that notation, we see
that te2t on the right hand side implies r = 2, and so s = 2. Our final guess is thus

xp(t) = t2(A1t+ A0)e
2t.

Now we can plug in our guess and solve for the constants A1 and A0:

(xp(t))
′′ = 4A1t

3e2t + (4A0 + 12A1)t
2e2t + (8A0 + 6A1)te

2t + 2A0e
2t;

−4(xp(t))
′ = −8A1t

3e2t + (−8A0 + 3A1)t
2e2t + 2A0te

2t;
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4xp(t) = 4A1t
3e2t + 4A0t

2e2t.

Plugging back into (5.2) we obtain, the following:

6A1te
2t + 2A0e

2t = te2t.

Now there is no e2t term on the right, so for the above to hold for all t ∈ R, we must have
A0 = 0. We also see that A1 = 1

6
. Hence the particular solution is xp(t) = 1

6
t3e2t and we

have as the general solution:

x(t) = xc(t) + xp(t) = c1e
2t + c2te

2t +
1

6
t3e2t.

Example 5.5. Consider the non-homogeneous equation

y′′ − 4y′ + 3y = 3te2t cos(t) + (t2 + 4) sin(2t).

The auxiliary equation is r2 − 4r + 3 = 0 which factors into (r − 3)(r − 1) = 0. The two
roots are thus r1 = 3 and r2 = 1.

Let’s split the right hand side up into two distinct terms:

f1(t) = 3te2t cos(t), f2(t) = (t2 + 4) sin(2t).

The guess for f1(t) is Case 2 (5.3.2). In this case α = 2 and β = 1. As α + iβ = 2 + i is
not a root of the auxiliary equation, we guess

y1(t) = (A1t+ A0)e
2t cos(t) + (B1t+B0)e

2t sin(t).

The guess for f2(t) is also case (2) from above. In this case α = 0 and β = 2. As α+iβ = 2i
is not a root of the auxiliary equation, we guess

y2(t) = (C2t
2 + C1t+ C0) sin(2t) + (D2t

2 +D2t+D0) cos(2t).

Our final guess is yp(t) = y1(t) + y2(t). It will have 10 unknowns, and solving for them
would be a ludicrous undertaking.

Example 5.6. Consider the following differential equation:

y′′ − 2y′ + 2y = et cos t+ 3et sin t.

The associated auxiliary equation is r2−2r+2 = 0. The roots are r1 = 1+i and r2 = 1−i.
We are in Case 2 (5.3.2). We see that α = 1 and β = 1, and in fact α + iβ = 1 + i. Then
s = 1 in that notation. We then follow the algorithm and guess

yp(t) = C1te
t cos t+ C2te

t cos t.

Notice that even though there are two terms on the right hand side of the differential
equation, they both correspond to the same 1 + i root, so we do not need to write

yp(t) = C1te
t cos t+ C2te

t sin t+D1te
t cos t+D2te

t sin t.

Indeed, we can combine like terms to get

yp(t) = (C1 +D1)te
t cos t+ (C2 +D2)te

t sin t,

which is the same thing as our original guess.
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In this previous example, we made some ad-hoc simplification based on the structure of
the right hand side to reduce the number of constants we had to solve for, in some capacity.
In more complicated examples, this type of maneuver can also appear, as will be seen in
the table below.

We now list a table with non-homogeneous terms with their associated guesses. There
will be no proof, but these examples should be able to highlight what’s going on in the
cases above. In the following table, remember that the guess depends on the solutions to
the complementary equation.

Differential Equation r1, r2 Guess For Particular Solution
y′′ − 6y′ + 9y = 3et 3, 3 Aet

y′′ − 6y′ + 9y = 2t2et 3, 3 (A2t
2 + A1t+ A0)e

t

y′′ − 6y′ + 9y = 4e3t 3, 3 t2(Ae3t)
y′′ − 6y′ + 9y = −t2e3t 3, 3 t2(A2t

2 + A1t+ A0)e
3t

y′′ − 6y′ + 5y = −2e5t 1, 5 t(Ae5t)
y′′ − 6y′ + 5y = −2t3e5t 1, 5 t(A3t

3 + A2t
2 + A1t+ A0)e

5t

y′′ − 6y′ + 5y = −2e2t + 3e4t 1, 5 Ae2t +Be4t

y′′ − 6y′ + 5y = −2et + 3e2t 1, 5 t(Aet) +Be2t

y′′ − 6y′ + 5y = −2tet + 3e2t 1, 5 t(A1t+ A0)e
t +Be2t

y′′ − 6y′ + 5y = 2e3t cos(2t) 1, 5 Ae3t cos(2t) +Be3t sin(2t)
y′′ − 6y′ + 5y = 2e3t sin(2t) 1, 5 Ae3t cos(2t) +Be3t sin(2t)

y′′ − 6y′ + 5y = 2e3t sin(2t)− e3t cos(2t) 1, 5 Ae3t cos(2t) +Be3t sin(2t)
y′′ − 2y′ + 5y = t2 + 1 + 2e2t 1± 2i (A2t

2 + A1t+ A0) + (Be2t)
y′′ − 2y′ + 5y = −et cos(2t) 1± 2i t(Aet cos(2t)) + t(Bet sin(2t))
y′′ − 2y′ + 5y = −tet sin(2t) 1± 2i t(A1t+ A0)e

t cos(2t) + t(B1t+B0)e
t sin(2t)

y′′ − 2y′ + 5y = −et cos(2t) + 2et sin(2t) 1± 2i t(Aet cos(2t)) + t(Bet sin(2t))
y′′ − 2y′ + 5y = t2e3t 1± 2i (A2t

2 + A1t+ A0)e
3t

y′′ − 2y′ + 5y = 2t3 − 3t2 + 4 1± 2i A3t
3 + A2t

2 + A1t+ A0

5.4. Initial Value Problems in the Non-Homogeneous Case. We can also solve
initial value problems in the non-homgeneous case. The idea is exactly the same as in the
homogeneous case: we first find the general solution, then determine the coefficients by
plugging in the initial value conditions. There is really nothing new going on here; it’s
perhaps best seen in an example.

Example 5.7. Consider the following IVP:

z′′(x) + z′(x) = 2e−x, z(0) = 0, z′(0) = 0.

The associated auxiliary equation is r2 + r = 0, which factors into r(r + 1) = 0. The
two roots are then r1 = 0 and r2 = −1. In particular, the complementary solution is
zc(x) = c1 + c2e

−x.
We now make our guess for the particular solution. Since the right hand side is 2e−1·x

and r2 = −1 is a root, following the algorithm tells us that we should guess zp(x) = Axe−x,
where the factor of x comes from the “overlap.” Plugging this in to extract the value of A
gives us:

(Axe−x)′′ + Axe−x = 2e−x,
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which one can solve into A = −2. Hence our general solution is

z(x) = zc(x) + zp(x) = c1 + c2e
−x − 2xe−x.

Let’s now use the initial conditoins. We first compute the derivative

z′(x) = −c2e−x − 2e−x + 2xe−x = −(c2 + 2)e−x + 2xe−x.

Then we have

0 = z(0) = c1 + c2

0 = z′(0) = −c2 − 2.

Then we have c2 = −2 and c1 = 2. The unique solution to our IVP is thus

z(x) = 2− 2e−x − 2xe−x.

The previous example encapsulates all of the techniques we have learned up to this point.

6. Variation of Parameters

Here we introduce another method for finding the particular solution for a non-homogeneous
differential equation, the variation of parameters. It applies in more generality than the
aforementioned method of undetermined coefficients, but may require, in some cases, a
hairy integral or two. In the first subsection we give some motivation for the procedure
from physics. Feel free to skip it. The second subsection describes how to use it in practice.

6.1. Motivation. The method of variation of parameters can be encapsulated in the fol-
lowing mantra: “non-homogeneous differential equations can be recast as a series of initial
value problems of the associated homogeneous differential equation.”6

Let’s begin with the following phsyical problem. Suppose we have a mass of 1 kilogram
on a spring as follows, and let x be the coordinate that determines the position of the
mass:

A mass on a spring.

Figure 1. Mass on a spring.

Here x depends on time; we are going to analyze how this physical system should evolve.
As the spring moves, the net force will consist of the spring force and a friction/drag term.
Let’s assume that the spring force −kx depends only on the position of the mass and the
drag force −bx′ depends only on the velocity of the mass. Then Newton’s second law
Fnet = ma = mx′′ implies that

(6.1) mx′′ = −kx− bx′ ⇒ mx′′ + bx′ + kx = 0.

6In a more general form, this goes by Duhamel’s principle.
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This homogeneous differential equation governs the evolution of the spring-mass system.
Phrased in terms of an initial value problem, we can say that given some initial conditions
x(t0) = x0 and x′(t0) = v0, the equation (6.1) will completely determine the trajectory of
the mass on the spring for all time.

Let’s suppose now that the mass begins at rest, and we quickly hit it with a hammer.
How does this change our differential equation? Well, the hammer is going to exert some
force on the mass (albeit for a very short amount of time). A graph of the force over time
f(t) imparted by the hammer might look like the following:

A graph of a spike detecting force against time for a hammer blow.

Figure 2. Force against time for a hammer blow.

Using Newton’s second law again, we must take into account this external force of the
hammer blow that we now call f(t). We now have

mx′′ = −kx− bx′ + f ⇒ mx′′ + bx′ + bx = f.

So this is almost the same as the equation (6.1) that we saw before, but with a non-
homogeneous term f on the right hand side.

Now Figure 2 gives us force over time. We know from physics that
∫ t
0
f(t) dt = mx′(t)−

mx′(0), i.e., force over time is impulse, and applying an impulse yields change in momentum
mx′. But take a look at the shape of the graph in Figure 2. It is a spike concentrated
at the time t = 0. Physically, this means that the hammer blow is giving our mass some
momentum basically instantaneously, which certainly agrees with our intuition. And we
can write the amount of momentum imparted as f(0) ds, where ds should be interpreted
as a very small interval of time. This makes sense as f(0) ds is a good approximation of
what the integral of the spike f(t) should be.

Putting everything together, here’s the takeaway: if we have the differential equation

mx′′ + bx′ + kx = f,

where f is a spike concentrated at 0, solving this is essentially equivalent to solving the
initial value problem for the homogeneous equation given by:

(6.2) mx′′ + bx′ + kx = 0, x(0) = 0, x′(0) =
f(0)

m
ds.

We divide by m on the right hand side as x′ is velocity, not momentum. The physical
intuition is as follows: hitting the mass with a hammer applies a force to the mass for such
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a small amount of time that it’s basically the same as giving the mass an initial velocity;
the dynamics are then governed by the homogeneous equation (6.1).

Let’s now consider a general form of f(t), one that does not have to look like a spike:

A general continuous function f(t).

Figure 3. A generic function f(t).

Physically, this could be interpreted as someone using their hand to apply pressure to
the mass at different levels of force over time. We now reduce this to the previous case
using an idea borrowed from calculus. We split f(t) into rectangles:

The function f(t) partitioned into a series of thin rectangles, like a Riemann sum.

Figure 4. The function f(t) is partitioned into rectangles. Each box rep-
resents an amount of impulse applied to the mass, which results in a change
in momentum.

In Figure 4, we can interpret each rectangle as “duller” hammer blow that imparts
momentum equivalent to the area of the triangle. Letting the widths of the rectangles
approach zero, we can say that using one’s hand to apply impulse to the mass results in a
change in momentum that can be perfectly approximated by a very, very high number of
rapid hammer blows to the mass of adequate force.

Under this interpretation, how does the system evolve? At the first instant, we have a
hammer blow at time t = 0, which induces movement according to the solution x0(t) that
solves

mx′′ + bx′ + kx = 0, x(0) = 0, x′(0) =
f(0)

m
ds.

Once again we divide by m to convert momentum to velocity. This is precisely the equation
(6.2) we saw earlier with one hammer blow. The next instant, we can imagine having
another hammer blow at a time ε > 0, where ε is a very, very tiny number, for being
barely past zero. This hammer blow induces movement according to the solution xε(t)
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that solves

mx′′ + bx′ + kx = 0, x(ε) = 0, x′(0) =
f(ε)

m
ds.

The initial conditions encode the fact that this “second” hammer blow is unaware of the
previous one; it’s imposing its own trajectory on the mass. In general, for each time s, we
solve the initial value problem

(6.3) mx′′ + by′ + kx = 0, x(s) = 0, x′(s) =
f(s)

m
ds

and obtain a solution xs(t). Note: here the subscript s is indicating that we are solving
the problem for the micro-hammer-blow at time s. The function xs(t) is then encodes
the unique evolution of the mass over time as a result of that micro-hammer-blow. Also,
as ds gets tiny and the number of rectangles we have increases, the impulse f(s) ds also
gets very tiny as f(s) is fixed. Hence the induced dynamics and trajectories will also be
very tiny, and indeed xs(t) will have the form xs(t) = [functions in t] ds. For example, the
initial value problem

x′′ + x = 0 x(s) = 0, x′(s) = f(s) ds

has solution

xs(t) = f(s) sin(t− s) ds.
In a bit we will be more explicit about how this works.

For now, here comes the crucial idea: as the differential equation is linear, we can simply
sum all of these trajectories up via superposition. The location of the mass at some time
t is going to be the continuous sum, or integral, of all of the trajectories imposed by the
micro hammer blows coming before. This yields the following integral as a (particular)
solution for the non-homogeneous equation

mx′′ + bx′ + kx = f

for a general function f :

x(t) =

∫ t

0

xs(t).

The above integral is with respect to s. But we do not write a separate ds as the differential
ds is already built into xs(t).

7 Notice that there are two parameters here: the time itself
as well as family of IVP solutions. We are integrating over the latter. So far, we have been
reasoning about things physically, and we came up with this integral. But now that we
have an actual solution, we can simply check that it works, i.e., that mx′′ + bx′ + kx = f
actually holds.

Using the Leibniz rule to differentiate, we obtain the following:

x′(t) = xt(t) +

∫ t

0

x′s(t) =

∫ t

0

x′s(t).

7This is a very technical point. Don’t really worry about it; understanding the intuition behind this
type of argument is far more important.

https://en.wikipedia.org/wiki/Leibniz_integral_rule
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The first term vanishes by the initial condition. We also get

x′′(t) =
x′t(t)

ds
+

∫ t

0

x′′s(t) =
f(t)

m
+

∫ t

0

x′′s(t) ds

which also follows from the initial condition. Hence we obtain

mx′′(t) + bx′(t) + kx(t) = f(t) +

∫ t

0

mx′′s + bx′s + kxs = f(t)

as xs(t) solves the homogeneous equation for all s! We have written down the solution
to a non-homogeneous differential equation in terms of solutions of initial value
problems of the associated homogeneous differential equation.8

Let’s now analyze the structure of xs(t). Say the general solution to the homogeneous
equation mx′′ + bx′ + kx = 0 is c1x1(t) + c2x2(t); we know from Section 2 that it must be
of this form. As xs(t) solves equation (6.3), the same homogeneous equation with initial

conditions x(s) = 0 and x′(s) = f(s)
m
ds, we know that xs(t) will take on the following form:

xs(t) = [c1(s)x1(t) + c2(s)x2(t)] ds.

where c1(s)x1(t) + c2(s)x2(t) solves the initial value problem

mx′′ + bx′ + kx = 0, x(s) = 0, x′(s) =
f(s)

m
.

This should make sense; it’s the same IVP we’ve been considering without the ds.
Note two parameters we have flying around here: s and t. For each fixed s, we are solving

the same homogeneous differential equation with a particular set of initial conditions: this
solution to this IVP is found with constants c1(s) and c2(s). That is why the constants
are in fact parameterized by s. We are, in fact, varying the parameters.

We can now apply all initial conditions at the same time. In particular, we have that
for all s:

0 = xs(s) = [c1(s)x1(s) + c2(s)x2(s)] ds

f(s)

m
ds = x′s(s) = [c1(s)x

′
1(s) + c2(s)x

′
2(s)] ds.

Note in the second equation that we only take derivatives on x1 and x2 as xs(t) is a function
of t. We can divide away and ignore ds in the first equation, and the differentials ds cancel
out in the second equation. We are left with solving the following system for c1(s) and
c2(s):

0 = c1(s)x1(s) + c2(s)x2(s)

f(s)

m
= c1(s)x

′
1(s) + c2(s)x

′
2(s).

The solution can be written down using Cramer’s rule. We obtain the following:

c1(s) =
−x2(s)f(s)

mW (x1, x2)
, c2(s) =

x1(s)f(s)

mW (x1, x2)
,

where W (x1, x2) is Wronksian (Section 4).

8It is the linearity of the differential equation that lets us combine them under the integral!
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Now let’s return back to our integral form solution of the nonhomogeneous problem. We
now have the following:

x(t) =

∫ t

0

xs(t) =

∫ t

0

[c1(s)x1(t) + c2(s)x2(t)] ds =

∫ t

0

c1(s) ds · x1(t) +

∫ t

0

c2(s) ds · x2(t).

Notice that we can replace the definite integral
∫ t
0
c1(s) ds with

∫
c1(t) where

∫
c1(t) is any

antiderivative of c1(t). The reason is that
∫ t
0
c1(s) ds −

∫
c1(t) is a constant, and as x1(t)

solves the homogeneous equation, its coefficient in front differing by a constant simply
won’t matter in our search for a particular solution. The same reasoning lets us replace∫ t
0
c2(s) ds with

∫
c2(t).

If we define g(t) :=
∫
c1(t) and h(t) :=

∫
c2(t), we obtain the following particular solution:

xp(t) = g(t)x1(t) + h(t)x2(t)

where

g(t) =

∫
−x2(t)f(t)

mW (x1, x2)
, h(t) =

∫
x1(t)f(t)

mW (x1, x2)
.

Hopefully this looks familiar.9

6.2. Computing With Variation of Parameters. As mentioned at the beginning of
this section, variation of parameters will let us find a particular solution for a particular
differential equation. And as is always the case, the particular solution will let us write
down a general solution, which can then be used to solve an initial value problem.

Let’s begin with finding the general solution to the constant coefficient differential equa-
tion

ay′′(t) + by′(t) + cy(t) = f(t).

The steps to apply the variation of parameters are quite simple:

(1) Find the complementary solution

yc(t) = c1y1(t) + c2y2(t)

for the associated homogeneous differential equation ay′′+by′+cy = 0 (Section 2).
Sometimes y1(t) and y2(t) might already be given; we will discuss this in a bit.

(2) Set the particular solution to be yp(t) = g(t)y1(t) + h(t)y2(t).
(3) Compute g(t) and h(t) via the following formulas:

g(t) =

∫
−y2(t)f(t)

aW (y1, y2)
, h(t) =

∫
y1(t)f(t)

aW (y1, y2)
,

where W (y1, y2) is the Wronskian (Section 4), and
∫

denotes finding any anti-
derivative.

(4) Write down the general solution:

y(t) = yc(t) + yp(t) = c1y1(t) + c2y2(t) + g(t)y1(t) + h(t)y2(t).

Let’s do a quick example.

9We can replace m, b, and k with functions of t; we just need to be careful to avoid regions where such
functions are undefined.
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Example 6.1. Consider the differential equation:

y′′ − y′ − 2y = 2e−t.

The auxiliary equation factors as (r − 2)(r + 1) = 0, and so the complementary solutions
are y1(t) = e2t and y2(t) = e−t. The particular solution has the form

yp(t) = g(t)y1(t) + h(t)y2(t).

The Wronskian is:

W (y1, y2)(t) = y1y
′
2 − y2y′1 = e2t · −e−t − e−t · 2e2t = −3et.

With a = 1 and f(t) = 2e−t, we compute:

g(t) =

∫
−y2(t)f(t)

aW (y1, y2)
dt =

∫
−e−t · 2e−t

−3et
dt =

∫
2

3
e−3t dt = −2

9
e−3t.

We also get

h(t) =

∫
y1(t)f(t)

aW (y1, y2)
dt =

∫
e2t · 2e−t

−3et
dt =

∫
−2

3
dt = −2

3
t.

Plugging into the above, we have the particular solution is yp(t) = −2
9
e−t − 2

3
te−t, and so

the general solution is

y(t) = c1e
2t + c2e

−t − 2

9
e−t − 2

3
te−t = c1e

2t + c2e
−t − 2

3
te−t,

where we absorbed one term into the homogeneous solution.

Notice that in this case we also could have applied the method of undetermined coef-
ficients with guess t(Ae−t). It probably would have been a lot faster. Usually, when the
method of undetermined coefficients is available (when f(t) is some combination of poly-
nomials, exponentials, sines, and cosines), it probably yields a particular solution with less
effort. But this is not a hard and fast rule.

Let’s do a slightly more interesting example, one that cannot be solved using the method
of undetermined coefficients:

Example 6.2. Consider the differential equation:

y′′ + 3y′ + 2y =
1

1 + ex
.

The auxiliary equation factors as (r + 2)(r + 1) = 0, and so the complementary solutions
are y1(x) = e−x and y2(x) = e−2x. The particular solution has the form

yp(t) = g(t)y1(t) + h(t)y2(t).

The Wronskian is:

W (y1, y2)(x) = y1y
′
2 − y2y′1 = e−x · −2e−x − e−2x · −e−x = −e−3x.

With a = 1 and f(x) = 1
1+ex

, we compute:

g(x) =

∫
−y2(x)f(x)

aW (y1, y2)
dx =

∫ −e−2x · 1
1+ex

−e−3x
dx =

∫
ex

1 + ex
dx = ln(1 + ex).
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We don’t need absolute value bars for the logarithm as 1 + ex > 0 for all x. We also get

h(x) =

∫
y1(t)f(t)

aW (y1, y2)
dt =

∫
e−x · 1

1+ex

−e−3x
dx =

∫
− e2x

1 + ex
dx.

Alright, we have to do something about this integral. Let u = ex, then du = ex dx. Then
we have∫
− e2x

1 + ex
dx =

∫
− u

1 + u
du =

∫
−(1 + u)− 1

1 + u
du =

∫
−1+

1

1 + u
du = −u+ln |1+u|.

Substituting back in yields

h(x) = −ex + ln(1 + ex).

Plugging into the above, we have the particular solution is

yp(x) = ln(1 + ex)e−x + (−ex + ln(1 + ex))e−2x

= ln(1 + ex)e−x − e−x + ln(1 + ex)e−2x.

The general solution is thus

y(t) = yc(t) + yp(t)

= c1y1(t) + c2y2(t) + yp(t)

= c1e
−x + c2e

−2x + ln(1 + ex)e−x − e−x + ln(1 + ex)e−2x

= c1e
−x + c2e

−2x + ln(1 + ex)e−x + ln(1 + ex)e−2x,

where we absorbed one term into the homogeneous solution.

Finally, note that variation of parameters can even be applied when the coefficients are
not constants. An example would be the differential equation

ty′′ − (t+ 1)y′ + y = t2.

Let’s think about what needs to change in our process. First, we simply have no method
to find the two complementary solutions y1(t) and y2(t) that solve ty′′ − (t+ 1)y′ + y = 0.
We could resort to guessing. But what is most likely going to happen is that y1(t) and
y2(t) will be given. So let’s now assume we’re given

y1(t) = et, y2(t) = t+ 1.

We can readily verify that y1(t) and y2(t) indeed solve the homogeneous equation.
Next, observe that in the constant coefficient case, the coefficients b and c in front of

y′ and y respectively never made an appearance in our calculations. Only the coefficient
a did in the denominator for solving for g(t) and h(t). Well, we’ll simply replace a with
whatever function of t is in front of y′′.

To recapitulate, if we are confronted with

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f(t)

and given complementary solutions y1(t) and y2(t) of the associated homogeneous equation,
then our guess for the particular solution

yp(t) = g(t)y1(t) + h(t)y2(t)
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is solved by

g(t) =

∫
−y2(t)f(t)

a(t)W (y1, y2)
, h(t) =

∫
y1(t)f(t)

a(t)W (y1, y2)
.

Let’s finish the example we started.

Example 6.3. Take the differential equation:

ty′′ − (t+ 1)y′ + y = t2,

and assume we are given the complementary solutions y1(t) = et and y2(t) = t + 1. The
particular solution has the form

yp(t) = g(t)y1(t) + h(t)y2(t).

The Wronskian is:

W (y1, y2)(t) = y1y
′
2 − y2y′1 = et · 1− (t+ 1) · et = −tet.

With a(t) = t and f(t) = t2, we compute:

g(t) =

∫
−y2(t)f(t)

a(t)W (y1, y2)
dt =

∫
−(t+ 1) · t2

t · −tet
dt =

∫
(t+ 1)e−t dt = −e−t(t+ 2).

We also get

h(t) =

∫
y1(t)f(t)

a(t)W (y1, y2)
dt =

∫
et · t2

t · −tet
dt =

∫
−1 dt = −t.

Plugging into the above, we have the particular solution is

yp(t) = −e−t(t+ 2)et − t(t+ 1) = −t− 2− t2 − t = −t2 − 2t− 2.

So the general solution is

y(t) = c1e
t + c2(t+ 1)− t2 − 2t− 2 = c1e

t + c2(t+ 1)− t2,
where we absorbed two terms into the homogeneous solution.

Brian Sun
Email address: bsun@berkeley.edu
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