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Lecture 1 August 24th. A Broad Survey of Banach Algebras

Definition 1 A Normed Algebra is a normed vector space over a field, preferably R or C, equipped with
another sub-multiplicative, associative binary operation (multiplication) (i.e, ‖ab‖ ≤ ‖a‖ ‖b‖)

From a norm, we get the standard metric, d(a, b) = ‖a− b‖. This metric determines a topology on the space
for which addition and multiplication are uniformly continuous. A Banach Algebra is a normed algebra which
is complete for this metric. Given a normed algebra A, form it’s completion, and from uniform continuity,
the addition and multiplication extend to the completion to produce a Banach Algebra.

Example: Let X be a compact topological space. Let A = C(X) the space of continuous R valued functions
with the usual structure. With the supremum norm ‖f‖∞ = sup{|f(x) : x ∈ X} this is a Banach Algebra.
If X is locally compact, then Cb(X), the space of bounded continuous functions under the same norm is also
a Banach Space. Another important space is C∞(X), the subalgebra of functions that vanish at infinity.
This means that for all f and every ε > 0, there is a compact K ⊂ X with |f(x)| < ε for x /∈ K.

Example: Let O ∈ Cn be a bounded open subset. Let H∞(O) be the functions that are holomorphic
and bounded on O, under the supermum norm. Let A∞(O) be the functions that are continuous on the
completion of O and holomorphic on the original set. These two are interesting Banach Algebras.

Example: Let (X, d) be a compact metric space. For f ∈ C(X), define L(f) = sup{ |f(x)−f(y)|
d(x,y) , x 6= y}.

Note that this quantity may be infinity (when?). Define the set of Lipshitz functions Ld(X) = {f ∈ C(X) :
L(f) <∞}, with a norm ‖f‖d = ‖f‖∞+L(f), this forms a Banach algebra. Notice that L gives a seminorm
on the space, and in fact, the metric can be recovered from L. This is discussed later in this class.

If a Topological Vector space has a topology determined by a countable number of seminorms and is complete,
it is called a Frechet space. If the product is continuous, it’s a Frechet Algebra. We shall discuss about these
algebras in greater detail later. We now see a non commutative example of a Banach Algebra.

Example: If X is a Banach Space, the space of all bounded/continuous operators on X, denoted by B(X),
is a Banach Algebra with the operator norm. Any closed subalgebra of B(X) is also Banach. Notably, if X
is a Hilbert Space, we also have the operation of taking adjoints, with ‖T‖ = ‖T ∗‖.

Definition 2 A C∗ Algebra is a closed subalgebra of B(H), the algebra of operators on a hilbert space, that
is stable under taking adjoints.
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Lecture 2 August 26th. More Surveying, and Introductions

We stopped with the definition of C∗Algebras in the previous lecture. Gelfand and Neimark in 1943 gave
an abstract characterization of these algebras. A consequence of this, also called ”little” G-N Theorem, is
as follows.

Corollary 3 Let A be a commutative C∗Algebra of B(H). Then A is isometrically and *-algebraically
isomorphic to some C(X) for a locally compact space X.

This shall be discussed in the upcoming lectures. An easier example where this corollary works is when
you consider some T ∈ B(H) which is normal (i.e, commutes with it’s adjoint). If A is the C∗ algebra
generated by T , then A ∼= C(X) for some compact space X. It is interesting to also discuss when H is a
finite dimensional space.

This class shall also discuss to a certain extent, Von Neumann Algebras, *-subalgebras of B(H) that is
norm closed, closed under the weak topology on the space. Before we begin a more careful study of the
objects at hand, we shall look at one final example of a banach algebra.

Example: Let G be a discrete group, let π : G → Aut(X) ⊂ B(X) be a representation of G on the
banach space X. π is bounded if all the images of π are norm bounded by a K. L1(G) with convolution, i.e,
(f ∗ g)(x) =

∑
y∈G f(y)g(y−1x), is a fine banach algebra.

For a while, all algebras have an identity. Let A be an algebra over F. Suppose f ∈ C(X) for some locally
compact X. How do we look at the range of this function? We ask if f − λ1A is invertible, in which case λ
is in the range. This is the motivation of the concept of spectrum.

Definition 4 The spectrum of a ∈ A is {λ ∈ F : a − λ1A is not invertible}. Note that this is a purely
algebraic object. The spectrum is sometime denoted by σ(a).

Lemma 5 Let A be a unital Banach Algebra and let a ∈ A, ‖a‖ < 1. Then 1 − a is invertible and∥∥(1− a)−1
∥∥ ≤ 1

1−‖A‖ .

Proof: We clearly want this: 1
1−a =

∑
an with a0 = 1. Let Sn =

∑n
k=0 a

k. We want the Sn to form a
cauchy sequence. For n > m, we have

‖Sn − Sm‖ =

∥∥∥∥∥
n∑

k=m+1

ak

∥∥∥∥∥ ≤
n∑

k=m+1

∥∥ak∥∥ ≤ n∑
k=m+1

‖a‖k

Since ‖a‖ < 1 this is exactly the situation of the ordinary geometric series, and it follows from here that the
sequence is a cauchy sequence. Because A is complete, ∃b ∈ A such that sn → b. We need to now show that
(1− a)b = 1 = b(1− a). (1− a)b = limn→∞(1− a).Sn = limn→∞(1− an+1) = 1.

Corollary 6 Let a ∈ A and suppose that ‖1− a‖ < 1. Then a is invertible and
∥∥a−1

∥∥ ≤ 1
1−‖1−a‖

The proof is trivial from the previous corollary. Note that this means that the open ball around the identity
element consists of invertible elements.

For any a ∈ A, define La, Ra as operators on A by Lab = ab and Rab = ba. Have LaLb = Lab. L is
called the left regular representation of A on itself. L : A → End(A) is an algebra homomorphism. Let
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GL(A) be the set of invertible elements in A. If a ∈ GL(A), then La is a homeomorphism of A onto itself.
Then for any a ∈ GL(A) let θ1 = {b ∈ A : ‖1− b‖ < 1}. This is open. Hence, La(θ1) ⊂ GL(a) is open and
contains a. This easily leads us to an important result:

Proposition 7 GL(A) is an open subset of A.
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Lecture 3 August 29th. On the Non-Emptiness of Spectra

Let A be a unital Banach Algebra. Let a ∈ A. Then φ : λa → a + λ, λ ∈ C is continuous and thus
φ−1(GL(A)) is an open set. But, this is nothing but {λ : a − λ is invertible}, which is the complement of
σ(a). Hence, σ(a) is a closed subset of C. The complement of σ(a) is hereby called the resolvent set ρ(a).

Proposition 8 ∀a ∈ A, λ ∈ σ(a) we have |λ| ≤ ‖a‖.

Proof: Suppose we have the otherwise, i.e, λ > ‖a‖, then (a − λ) = −λ(1 − a
λ ). This is invertible since λ

is invertible and 1− a
λ is invertible from the lemma from last lecture. So λ /∈ σ(a). which is a contradiction.

If we are working over R, we can have σ(A) = φ, and a quick example is when taking the rotation ma-
trix on R2. Another good set of examples can be found in C([0, 1]). This is a complete space, however, the
space of polynomials, a subalgebra (supremum norm) of this is dense but certainly not closed or complete.
Here, only the constant functions are invertible.

Definition 9 Define the resolvent of a as the function R(a, λ) = (λ− a)−1, defined on ρ(a).

Proposition 10 R is an analytic function, and analytic and bounded about ∞.

Proof: By definition, f−1(z0) = limz→z0
f(z)−f(z0)

z−z0 if limit exists. For a, b ∈ GL(A) we have a−1 − b−1 =

a−1(b− a)(b−1). A sidenote here is the fact that on GL(A), the mapping a→ a−1 is norm continuous (the
proof is using the ball of radius 1/2 trick), which leads to the fact that GL(A) is a topological group. In any
case, we proceed with showing the limit exists.

(z − a)−1 − (z0 − a)−1

z − z0
=

(z − a)−1((z0 − a)− (z − a))

z − z0
= −(z − a)−1(z0 − a)−1

Hence, it follows that the limit is indeed defined, and as predicted by freshman calculus. Look at R(a, z) at
∞. R(a, 1/z) = (1/z − a)−1 = 1

1/z−a = z(1 − za)−1 which exists for all |z| < 1
‖A‖ . For z = 0, R(a, 1

z ) = 0.

This ends the proof.

We are now ready to prove the main theorem of this lecture.

Theorem 11 Let A be a Banach Algebra over C. Then ∀a ∈ A, σ(a) 6= φ.

Proof: Suppose the spectrum were empty. Then the resolvent set is the whole of C. Then the resolvent func-
tion is defined on the entire complex plane, and is analytic and bounded. We can’t directly apply Liouville’s
theorem from complex analysis here, simply because the resolvent is not a complex valued function. For this
we take a slight detour. Viewing A as a Banach Space, we know that its dual space A′ is a large space. If
f is an A valued analytic function and if φ ∈ A′, then the map z → φ(f(z)) is now a complex valued func-
tion that is entire and bounded. But this is clearly impossible since the function has to be 0 from Liouville.

We end the lecture with a theorem (the quite obviously follows from the above theorem) that will be
used next lecture,

Theorem 12 (Gelfand-Mazur) Let A be a unital Banach algebra over C. If every non zero element is
invertible, then A is isometrically isomorphic to C. (However, this is not correct over R)

The proof uses the fact that the spectrum of an element is non empty. This gives a cannonical equality
between elements of A and λ ∈ C.
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Lecture 4 August 31st. On Maximal Ideals

For an algebra, we can consider left, right or two sided ideals, with the usual definition. If A is a normed or a
topological algebra and if I is an ideal, then it’s closure is again an ideal (since multiplication is continuous).

Proposition 13 Let A be a unital Banach Algebra and let I be an ideal in A. If I is a proper ideal, then
its closure is a proper ideal.

Proof: We know that 1 ∈ GL(A) which is an open set. And since the ideal is proper, it cannot intersect
with invertible elements. Hence, 1 cannot meet the closure of I.

However, this property is not shared by more general algebras. Good examples include Cc(R) the sub-
algebra of C∞(X) with functions of compact support; The subalgebra of polynomials.

Corollary 14 If A is a Banach algebra with 1, then every maximal 2-sided ideal is closed.

Proof: Since the closure of every proper ideal is also proper, we have that the closure of a maximal ideal is
itself.

Let X be a normed vector space and Y a subspace. We can consider X/Y and have π : X → X/Y .
For z ∈ X/Y set ‖z‖ = inf{‖x‖ : π(x) = z}. This can also be seen as the distance of the point from the
subspace Y . This is a seminorm, except when Y is closed, in which case it becomes a norm. If Y is closed
and if X is a Banach space, then X/Y is also a Banach space.

We now look at the natural extensions of these ideas to Algebras. If A is a normed algebra and if I is
a closed 2 sided ideal in A, then A/I is a normed algebra. If A is a Banach algebra, so is the quotient. Given
a, b ∈ A and c, d ∈ I, we have (a − c)(b − d) = ab − {(cb − ad − cd) ∈ I}. Hence, ‖π(ab)‖ = ‖π(a)π(b)‖ ≤
‖(a− c)(b− d)‖ ≤ ‖a− c‖ ‖b− d‖. It follows from taking infemum that ‖π(ab)‖ ≤ ‖π(a)‖ ‖π(b)‖. This along
with other minor details establish the extensions we seek.

Definition 15 A ring is said to be simple if it contains no proper 2 sided ideal except {0}.

A good example of a simple ring is Mn(F) for any field F.

Proposition 16 If R is a ring and if I is a maximal 2 sided ideal in R, then R/I is simple.

In fact, if A is a Banach algebra and if I is a maximal 2 sided ideal, then A/I is a simple Banach algebra.
Suppose A is a commutative ring with 1, and a ∈ A isn’t invertible, then aA = Aa is a 2 sided proper ideal.

Corollary 17 If A is a simple commutative ring with 1, then A is a field.

The proof of the above is obvious since every element is invertible from the previous reasoning. Now, let A
be a commutative Banach algebra with 1, over C. Let I be a maximal ideal in A. Then A/I is a simple
commutative Banach algebra with no non-invertible elements. We know from Gelfand Mazur theorem that
this means A/I is canonically isomorphic to C. Thus, from a maximal ideal I, you get a homomorphism φ
not identically 0, from A onto C with kernel as I.

Proposition 18 If φ : A→ C is a non trivial homomorphism and if a ∈ A then, φ(A) ∈ σ(a).
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Proof: We just consider φ(a− φ(a)). This is 0 so a− φ(a) is not invertible.

Corollary 19 Let A be a Banach algebra with 1 over C. Then every homomorphism φ : A → C is continu-
ous.

Proof: Given a ∈ A, we have φ(a) ∈ σ(a). This implies from a previous lemma, |φ(a)| ≤ ‖a‖, so we have
‖φ‖ = 1. Since this is norm bounded, it is continuous. This is one of our first results following a common
theme called Automatic Continuity.

Note that if A is a normed algebra with 1, and if φ : A → C is continuous, then Ker(φ) is a closed
maximal ideal in A.

Proposition 20 For a commutative Banach algebra with 1 over C, there is a natural bijection between the
set of maximal ideals of A and the set of non zero homomorphism from A → C.

For a commutative Banach Algebra, Â is defined to be the space of non zero C homomorphisms, or the
Maximal Ideal space of A. Observe that Â ⊂ A′ (the dual of A as a Banach Space), and as a matter of fact,
Â ⊆ Ball1(A′) (closed unit ball) under the weak* topology.
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Lecture 5 September 2nd. The Gelfand Transform

Let A be a commutative Banach algebra with 1, over C. We have Â = {φ : A→ C :one to one unital algebra
homomorphisms}. Since all of these have norm 1, they lie in the closed unit ball of A′.

Proposition 21 Â is closed in A′ for the weak* topology.

Proof: Let ψ ∈ Ball1(A′), and let {φα} be a net in Â that converges to ψ for the weak* topology. This
implies for every a ∈ A, φα(a) → ψ(a). The linearity of ψ is obvious. Now, for a, b ∈ A, φ(ab) =
limφα(ab) = limφα(a)φα(b) = limφα(b) limφα(b) from the boundedness and continuity of the functionals
in the net. It is easy to show that ψ(1) = 1. Hence, we have shown the closure of Â for the weak* topology.

From Alaoglu’s theorem, we have that Â is now compact, and by itself it’s a nice compact Hausdorff
space. Hence, the space C(Â) is a unital Banach Algebra. For any a ∈ A, define â ∈ C(Â) by â(φ) = φ(a).

Claim 22 â is continuous.

Proof: Suppose that {φα} is a net in Â and φα → φ0 ∈ Â. Then â(φ0) = φ0(a) = limφα(a) = lim â(φα).
This is synonymous to continuity.

Claim 23 The map a→ â is a unital algebra homomorphism of A into C(Â).

Proof: Let a, b ∈ A. âb(φ) = φ(ab) = φ(a)φ(b) = â(φ)b̂(φ), which is consistent with the definition of

multiplication. Hence âb = âb̂. 1̂A(φ) = φ(1) = 1C. Furthermore, ‖â‖∞ ≤ ‖a‖ since φ(a) ∈ σ(a).

The homomorphism Λ : A → C(Â) is called the Gelfand transform. This work was carried out by Gelfand
during the mid 1930’s and 40’s. Â is often called the Gelfand spectrum. Observe that for a ∈ A, the range
of the gelfand transform is contained in σ(a), as consistent with our very first motivations, in lecture 2, of
the concept of a spectrum. When does equality occur is a pertinent question. Let us look at a special case.

Let A be a unital Banach algebra and let a0 be an element that generates A, i.e, the space of polyno-
mials of a0 is a dense subalgebra of A. Define Φ : Â → σ(a0) given by Φ(φ) = φ(a0) which is clearly in the
spectrum.

Theorem 24 Φ is continuous and injective, and onto.

Proof: If {φα} is a net with φα → φ, then Φ(φα) = φα(a0) → φ(a0) = Φ(φ). This is synonymous with
continuity. Suppose Φ(φ1) = Φ(φ2), we have φ1(a0) = φ2(a0). Remember that these are algebra homomor-
phisms. This means for any polynomial p, φ1(p(a0)) = φ2(p(a0)). Since the polynomial space is dense in
A, we have φ1 = φ2. For ontoness, let λ ∈ σ(a). This means a− λ is not invertible. Consider an ideal I ⊂
polynomials in z, precisely, the ideal (z−λ)Poly(z). I(A) consists of non invertible elements, so it is proper,
and thus it’s closure is proper too. (FINISH THE PROOF HERE)
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Lecture 6. September 8th. On Semisimplicity

We start off by treating an important example. Let us prove that for a compact Hausdorff space X, the
maximal ideal space in the algebra of continuous functions is homeomorphic to X. Let X be a compact
Hausdorff space. Let A = C(X) with the supremum norm. Each x ∈ X gives a φx ∈ Â by φx(f) = f(x).

Proposition 25 Let I be an ideal in A. If ∀x ∈ X there is fx ∈ I with fx(x) 6= 0 then I = A.

Proof: For each x, fxfx (which is in the ideal I) is a non negative function with non-zero value at x. Thus,
we can assume that fx’s are non negative. Then for each x, set θx = {y ∈ X : fx(y) > 0} is an open set
containing x. Thus, these sets form an open cover of X. By compactness, we have a finite subcover. There
are x1, x2, . . . xn such that

⋃n
j=1 θxj = X. Let f = fx1

+ fx2
+ . . .+ fxn . This function is in the ideal I since

it is a sum of functions in the ideal. We know that this is a non negative function, and in fact it is also non
zero since for every x ∈ X, fx(x) 6= 0. Thus, since f−1 ∈ C(X), ff−1 is in I, but this means I contains 1,
and thus equals to the whole space A.

It follows that x→ φx is a bijection from X onto Â.

Claim 26 This map is continuous.

Proof: Let {xα} be a a net of elements in X that converge to x0, then for any f ∈ C(X), φxα(f) = f(xα)→
f(x0) = φx0

(f). Thus φxα → φx0
for the weak* topology.

Since X and Â are compact, this map is a homeomorphism.

Now, we move on to a more general result concerning the range of the Gelfand Transform of an element.

Theorem 27 Let A be a commutative Banach Algebra with 1 over C. For a ∈ A, the range of the Gelfand
Transform (â) is equal to σ(a).

Proof: Let λ ∈ σ(a), so that a − λ is not invertible. (a − λ)A is an ideal, and is proper in A. By zorn’s
lemma, this is contained in a maximal ideal. So, there exists φ ∈ Â with φ((a− λ)A) = 0, and hence we get
φ(a) = λ. Thus, λ is in the range of the gelfand transform.

It is important to note here that this proof can be completed without using the Zorn’s Lemma, for finitely
or even countably generated Banach Algebras. But, once you have infinitely generated Banach Algebras, we
require Zorn’s lemma. In fact, constructing the maximal ideal is almost impossible in most cases. Here is
an example of such a situation.

Example: Let F be a finite field. For each n, let Fn = F . Let A =
∏
n∈N Fn. Let I be the ideal,

⊕n∈NFn. This certainly lives in a maximal ideal, and it is impossible to construct this maximal ideal

The Gelfand transform for A is injective if the intersection of the maximal ideals is {0}. We then say that
A is semisimple.
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Lecture 7. September 10th. Spectral Radius

As usual, let A be our Banach space with 1 over C and commutative, and Â be it’s maximal ideal space. We
have seen that the range of the Gelfand transform of a ∈ A is nothing but the the spectrum σ(a). Define
the usual norm for elements, ‖â‖∞ = sup |λ|, λ ∈ σ(a). Call this, rather conveniently, the spectral radius of
a, r(a).

We quickly see the following: If a, b ∈ A, then

r(ab) =
∥∥∥âb∥∥∥

∞
=
∥∥∥âb̂∥∥∥ ≤ ‖â‖∞ ∥∥∥b̂∥∥∥∞ = r(a)r(b)

Similarly sub-linearity follows. So r is a fine algebra seminorm on A. Note, if A is not commutative, then
submultiplicity of this spectral radius fails.

Now consider a ∈ A. We have that σA(a) ⊆ σ(a,1)(a), where (a, 1) is the algebra generated by a, 1.
This is just because a bigger algebra has more potential to create more invertible elements. Let f be a
holomorphic function, C-valued defined in an open subset of C that contains {z : |z| ≤ ‖a‖}. Thus, there
exists a power series that converges absolutely and uniformly on the ‖a‖-ball, f(z) =

∑∞
n=0 αnz

n. Then
define f(a) =

∑∞
n=0 αna

n, where a0 := 1A.

Proposition 28 (First version of spectral mapping theorem) If λ ∈ σ(a,1)(a), (then we know |λ| ≤
‖a‖) then f(λ) ∈ σ(f(a))

Proof: Look at

f(a)− f(λ) =

∞∑
n=0

αn(an − λn) =

∞∑
n=1

αn(an − λn) =

∞∑
n=1

αn(a− λ)(an−1 + an−2λ+ . . . λn−1) ≤ n ‖a‖n−1

Now, we have that this is equal to (a − λ)b1 for some b1, and this b1 exists from the above convergence
argument. Thus, the invertibility of f(a)− f(λ) implies the invertibility of a−λ. This means λ is not in the
spectrum, which is a contradiction.

So let f(z) = zn. See that if λ ∈ σ(a), then λn ∈ σ(an), and thus it is contained in the ‖an‖ ball.

Hence, |λ| ≤ ‖an‖1/n, and thus, r(a) ≤ liminf ‖an‖1/n.

Definition 29 a ∈ A is quasi-nilpotent if ‖an‖1/n → 0 as n→∞.

Note, that a is quasi nilpotent implies σ(a) = 0. We now look at an important theorem which we shall prove
shortly afterwards.

Theorem 30 (Gelfand Spectral Radius Formula) For A commutative Banach Algebra with 1, and for

a ∈ A, we have lim ‖an‖1/n exists, and is equal to the spectral radius of a.

Here is an important consequence.

Proposition 31 Let A be commutative Banach Algebra with 1. Then,ˆ: A → ˆC(A) is isometric exactly if∥∥a2
∥∥ = ‖a‖2 for all a ∈ A.
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Proof: If this holds, then we have
∥∥a2n

∥∥ = ‖a‖2n for all n. Thus, we have r(a) = ‖a‖ = ‖â‖∞. Conversely,

if
∥∥a2
∥∥ = S2, then

∥∥a2k
∥∥ ≤ S2k and

∥∥∥a2k
∥∥∥ 1

2k ≤ S. So, r(a) = ‖â‖ ≤ S. Hence, if S 6= ‖a‖, the Gelfand

transform is not isometric.

We now define an important algebraic object that we shall discuss in great depth in the next few lectures.

Definition 32 A ∗ Algebra over C is an algebra A equipped with an involution a→ a∗ that satisfies a∗∗ = a,
is additive and (αa)∗ = αa∗, and (ab)∗ = b∗a∗. A normed ∗ algebra is one that preserves involution under
the norm.



11

Lecture 8. September 12th. Gelfand’s Spectral Radius Formula

Our strategy for proving the Gelfand Spectral Radius Formula we saw last time, is to prove that the liminf
is greater than or equal to limsup, thereby establishing the existence of the limit.

Theorem 33 (Gelfand Spectral Radius)

lim inf ‖an‖1/n ≥ ‖â‖∞ ≥ lim sup ‖an‖1/n

Proof: We know that the Resolvant function is analytic at infinity. R(a, z) = (z−a)−1 is holomorphic outside
of the ‖a‖ ball. We look at z →∞, i.e, consider z → 0 and look atR(a, z−1) = 1

z−1−a = z
1−za = z

∑∞
n=0(za)n,

and this exists (the convergence) as long as |z| < ‖a‖−1
. But R(a, z) is holomorphic for |z| > r(a), that is,

for |z−1| < r(a)−1. Note: ‖a‖ ≥ r(a) and
∥∥a−1

∥∥ ≤ r(a)−1.

Let φ ∈ A′ be given. Then φ(R(a, z−1)) is a C valued function that is holomorphic for |z| < r(a)−1. The
power series about 0 for this function is (which converges for |z| < r(a)−1) z

∑∞
n=0 φ(an)zn. Let r > r(a) be

given so that r−1 < r(a)−1. The power series now converges absolutely and uniformly for |z| ≤ r−1. This
gives us that

∑
φ(anr−n) converges absolutely, meaning each individual term is norm bounded. Thus, there

exists a constant Mα such that |φ(anr−1)| ≤Mα for all n.

Now, for each n, let Fn be the element of A′′ defined by Fn(ψ) = ψ(anr−n). Given ψ there is a con-
stant Mψ such that ∀n, Fn(ψ) ≤ Mψ. By the principle of uniform boundedness (which is a result in
classical functional analysis, following from the Baire Category Theorem), we have that this collection is
totally bounded. Hence, ∃M such that ‖Fn‖ ≤ M for all n. But, it is clear that ‖Fn‖ = ‖anr−n‖. So,

‖an‖1/n ≤ M1/nr for all n. As n goes to infinity, we have limsup ‖an‖1/n ≤ r, and this is for all r > r(a).
Hence, we have the right hand side inequality. The left hand side inequality follows from last lecture. Hence
proved.
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Lecture 9. September 14th. Group Algebras and Symmetry

We start off our discussion with an interesting class of abstract *-algebras, which we shall define later in this
lecture.

Let S be a semigroup with e. Let π : S → End(V ) for a vector space V , with the discrete topology
(This is called a representation of S on V , forgetting the addition in V ) . Let f ∈ Cc(S), finite C linear
combinations of elements in S, compact support. Set πf ∈ End(V ), with the following natural map.

πf (v) =
∑
x∈S

f(x).πx(v)

We also have defined the natural convolution product of elements in Cc(S) by (f ∗ g)(x) =
∑
yz=x f(y)g(z),

and one should note that this convolution product is defined precisely in a way that makes πf∗g = πfπg. So,
f → πf is an algebra homomorphism of Cc(S) into End(V ).

We take a slight detour. Suppose V is a Banach space. Let π : S → B(V ) bounded operators on V .
Then, set w(x) = ‖π(x)‖ for x ∈ S. We have w(xy) ≤ w(x)w(y) with w(e) = 1. This is a ’weight function’
on S. A way to see this would be by considering f ∈ Cc(S), ‖πf‖ = ‖

∑
f(x)π(x)‖ ≤

∑
|f(x)| ‖π(x)‖. So,

on Cc(S), put a norm defined by ‖f‖1,w =
∑
|f(x)|w(x) which is nothing but the l1 norm for weight w.

Thus, ‖πf‖ ≤ ‖f‖1,w. We also have ‖f ∗ g‖1,w ≤ ‖f‖w,1 ‖g‖w,1. Thus Cc(S) with ‖‖1,w is a normed algebra

with identity, and it’s completion is l1(S,w).

So, πf is well defined for f ∈ l1(S,w). In our studies, we shall assume w = 1, and mostly spend time on S
being a group G. Assume that G now acts on isometries of V . Let V be a hilbert space H and π is a unitary
representation on H. Define πx−1 = π∗x. Then, (πf )∗ = (

∑
f(x)π(x))∗ =

∑
f(x)πx−1 =

∑
f(x−1)π(x). So

on Cc(G), set f∗ by f∗(x) = f(x−1). It is easy to see that this is an involution, and preserves norm. Thus
l1(G) is a * Banach Algebra with 1. If G is commutative, l1(G) is commutative.

We have encountered so far, 3 kinds of * Banach Algebras. l1(G), C(X) and concrete C*Algebras ⊆ B(H).
We shall return to this subject soon, but now we carry on our study of spectra, leading to the little Gelfand
Naimark Theorem.

Definition 34 Let A be a * normed Algebra. Then a ∈ A is said to be self adjoint if a∗ = a.

Definition 35 A *-Banach Algebra is symmetric if whenever a ∈ A and a is self adjoint implies σ(a) ∈ R.

Example: Let A = C2 = C⊕ C, with sup norm. Define (z, w)∗ = (w, z). This is not symmetric! (check)

Let A be a *-Banach Algebra that is symmetric. Then if a ∈ A, a∗ = a, then for any φ ∈ Â, φ(a) ∈ σ(a),

so (̂a) is R valued.

In any *-Algebra, given a ∈ A,

a =
a+ a∗

2
+ i

a− a∗

2i

Define the real and imaginary parts of a from the above equation. Observe that Re(a) and Im(a) are both
self adjoint. For any a ∈ A, â∗ = â. We now propose a very important claim.

Proposition 36 For a commutative *-Banach Algebra that is symmetric, the range of the Gelfand Trans-
form is dense in C(Â)
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Proof: Follows from Stone Weierstrass. Exercise.

Let A ⊆ B(H) be a C∗ Algebra. We have the key property defining this, ‖T ∗T‖ = ‖T‖2. The proof of this

is as follows. Given ψ ∈ H, ‖Tψ‖2 =< Tψ, Tψ >=< T ∗ Tψ, ψ >≤ ‖T ∗T‖ ‖ψ‖2. Thus, ‖T‖ ≤ ‖T ∗T‖1/2.

Finally, ‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖ ‖T‖ = ‖T‖2. The result follows. We end with an important definition.

Definition 37 An Abstract C-* Algebra is a *Banach Algebra with an involution such that the key property
‖a∗a‖ = ‖a‖2.
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Lecture 10. September 16th. Little Gelfand Naimark Theorem,
Continuous Functional Calculus

Let A be a *-Algebra. a ∈ A is said to be normal if it commutes with it’s adjoint.

Proposition 38 Let A be a C* Algebra with 1, and let a be a normal element of A. Then r(a) = ‖a‖.

Proof: First let’s do for a∗ = a. From the characteristic property of C* Algebras, we have ‖a‖2 =
∥∥a2
∥∥,

which is a precise condition for the gelfand transform to be an isometry. Hence proved. Now, for a normal,
‖a‖2 = ‖a∗a‖ = r(a∗a) ≤ r(a∗)r(a) ≤ ‖a‖ r(a). Now, since a sits inside a commutative Banach Algebra, we
have ‖a‖ = r(a).

Corollary 39 Let A be a commutative C* Algebra with 1. The Gelfand Transform is isometric.

From the previous lecture, we have that the Gelfand Transform is onto if A is symmetric. Here’s is an
important proposition.

Proposition 40 Let A be a C* Algebra with 1. Then A is symmetric.

Proof:[Richard Arens]
Let a ∈ A be self adjoint. We need to show that σ(a) ∈ R. Let λ ∈ σ(a), and λ = r + is. For any t ∈ R, let

b = bt = a+ it.Id. So, σ(b) = σ(a) + it. Now, we have ‖b∗b‖ = ‖b‖2. Hence, b∗b = (a− it)(a+ it) = a2 + t2.

Hence, ‖b∗b‖ ≤
∥∥a2
∥∥ + t2. But, we know that ‖b‖2 ≤ ‖r + i(s+ t)‖2 = r2 + (s + t)2. It follows that

‖a‖2 ≥ r2 + s2 + 2st. But, this is true for all t ∈ R. Hence, s = 0 as desired.

This culminates in the theorem we are interested in.

Theorem 41 (Little Gelfand Naimark Theorem) Let A be a commutative C∗ Algebra with 1. Then
A ∼= C(Â), isometrically *isomorphic.

Proposition 42 For any C∗ Algebras with q, its norm is determined by the Algebraic and * structure.

Proof: ‖a‖2 = ‖a∗a‖ = r(a∗a). Let V be a finite dimensional vector space over C. Let A = L(V ). If you
choose an inner product on V , it gives a norm and a star structure in fact.

We now look at one form of the spectral theorem for self adjoint operators. Let T ∈ B(H) be self ad-
joint. Then, from the Gelfand Naimark theorem and a previous result, we have C∗(T, 1H) ∼= C(σ(T )), with
the canonical map T → T̂ (r) = r, and for a polynomial p, we have p(T )→ p(r). A quick application is the
following result.

Proposition 43 Let A be a C* Algebra with 1 and let B be a sub C* Algebra containing 1A. Then for any
b ∈ B, σB(b) = σA(b).

The proof of this involves a standard trick, and is a good beginning to the ideas of continuous functional
calculus. We leave it to the reader as an exercise. We first prove it for self adjoint operators and then prove
it for the general case.
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Lecture 11. September 19th. Group Algebras and some Special
Examples

Let S be a discrete semigroup with e. l1(S) with convolution is a Banach Algebra with 1 (δe) assume S is
commutative so that A = l1(S) is a commutative Banach Algebra with 1. We are concerned about finding
what Â looks like.

Elements of Â are homomorphism φ : S → C with φ(1) = 1. Furthermore, for φ ∈ Â, φ(a) ∈ σ(a) so
‖φ(a)‖ ≤ ‖a‖. So φ sits inside the unit ball of A′. From previous knowledge, A′ = l∞(S). So φ is associated
with a bounded function on S with ‖φ‖∞ ≤ 1.

φ is stable under the structure of a semigroup homomorphism. Hence, under the l∞ norm, φ is a semi-
group homomorphism of S into the unit disk. That is,

Proposition 44 Â ∼= Hom(S,D)

where D is the unit disk in C. The topology on Â is the weak * topology restricted to A′.

For a discrete set Y , the weak * topology of l∞ from l1 coincides with the topology of uniform convergence
on finite subsets of Y . We now look at an interesting special case where the semigroup we have at hand is Z+.

Let S = Z+, it’s generated by 1. So, l1(S) is generated by δ1, so any φ belonging to Â is determined
by φ(δ1). So Â = D, is identified with the unit disk.

Given w ∈ D define φ2(n) = wn, φw ∈ Hom(Z+, D). So, φw ∈ Â. For f ∈ l1(Z+), define the gelfand

transform in the usual way f̂ =
∑∞
i=0 f(n)wn. This gives a function on D that is holomorphic in the interior

and has an absolutely convergent power series on D.

Suppose f ∈ l1(Z+) is such that f̂(w) 6= 0 for all w ∈ D. So, q/f is a continuous function on D that

is holomorphic inside D. So it has a power series. We claim in fact that 1/f̂ has a power series whose
coefficients form an element of l1(Z+).

Now we consider G is a discrete group and is commutative. A = l1(G), and Â = Unital Homomorphisms
from G → D. But for x ∈ G, φ(1) = φ(x)φ(x−1) = 1. Since ‖x‖ ≤ 1, we have ‖x‖ = 1 for all x ∈ G. Thus
we have the theorem:

Theorem 45 Â = Hom(G→ T ) where T = {z ∈ C : |z| = 1}

On Â, the weak * topology coincides with the topology of uniform convergence on compact sets. We now
look at another specific and rather illustrative example.

Example: Let G = Z, where l1(Z) is generated by δ1 and δ−1. So, any φ ∈ Â is determined by φ(δ1). So
Â = T . We can visualize elements as rotations on the circle. So, for f ∈ l1(Z),

f̂(eit) =

∞∑
n=−∞

f(n)eint

And voila, we have the Fourier Series. Now perhaps the reader can confirm his guess that the Gelfand
transform is really what’s going on inside the fourier transform.
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Lecture 12. September 21st. Fourier Transform is Injective?

Let G be a discrete commutative group. We have from the previous lecture that ˆl1(G) = Hom(G,T ).

Specially, for Z, we have ˆl1(Z) = T . For f ∈ l1(Z), we have it’s gelfand transform, f̂(eit) =
∑
f(n)eint.

Similarly, for Zn, we have ˆl1(Zn) = Tn, where we define the Gelfand transform accordingly. To simplify

notation, we say Ĝ := Hom(G,T ) = ˆl1(G).

We are interested in the following question. Is the Gelfand Transform, in this case, the Fourier Transform
injective? First, we have the following theorem.

Theorem 46 If f ∈ l1(G) and if f̂ never takes value 0 on Ĝ so that 1
f̂
∈ C(Ĝ). Then there exists g ∈ l1(G)

with ĝ = 1
f̂

.

Now let’s deal with the injectivity. Let G be any discrete group not necessarily commutative. We have
for Cc(G)- continuous functions of finite support, defined the left regular representation λ as follows:
λxf(y) = f(x−1y). We have λx1

λx2
= λx1x2

.

For 1 ≤ p ≤ ∞, we have that the λx is an isometry on lp(G). The integrated form (as we have de-
fined in the previous couple of lectures) of λ is a representation of l1(G) algebra as operators on lp. We then
have:

Theorem 47 The integrated form f → λf is injective. i.e, if λf = 0 then f = 0.

Proof: Consider δe ∈ lp(G). We have λf (δe) = f . Thus, every f can be viewed as a function in lp(G). The
result follows.

Consider the case of λ on l2(G). We have that λ : l1(G) → B(l2(G)) is injective. Furthermore, λ∗f = λf∗

where f∗(x) = f(x−1). Therefore, the image of l1(G) in B(l2(G)) is a ∗ algebra. Then the norm closure

Cr(G) of it is a C∗ algebra with 1. From Gelfand Naimark, we have that C( ˆCr(G)) = Ĝ, wherein the gelfand
transform is an injective isomorphism. Hence, we have proved our original question.
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Lecture 13. September 23rd. Topological Groups, Duality, Spectral
Synthesis

Let G be a locally compact abelian group. Set Ĝ = {φ : G → T} ⊂ Cb(G). Put on Ĝ the topology of
uniform convergence on compact sets. If K is a compact subset of G, we imbibe the infinity-norm on K.

Proposition 48 Then for this topology, Ĝ is a topological group. That is, product is jointly continuous and
taking inverse is continuous.

Proof: Given φ, ψ, φ0, ψ0 ∈ Ĝ we have

‖φψ − φ0ψ0‖ ≤ ‖φψ − φψ0‖+ ‖φψ0φ0ψ0‖ ≤ ‖φ‖ ‖φ− ψ0‖+ ‖φ− φ0‖ ‖φ0‖

The result follows quickly. For inverse, we just take conjugates, which preserves norm.

Thus for G being a discrete abelian group, Ĝ with these norms, is a topological group. This topology

also agrees with the weak * topology from ˆl1(G) which is compact. Thus, Ĝ is a compact topological group.
This is called the Dual group of G.

If G, H are discrete commutative groups and if F : G → H is a group homomorphism, then for ψ ∈ Ĥ we
have ψ(F ) ∈ Ĝ. Define as usual, F̂ : Ĥ → Ĝ by F̂ (ψ) = ψ(F ).

Proposition 49 Then F̂ is a continuous group homomorphism from Ĥ → Ĝ.

More generally, we can see that the category of compact commutative groups is in concrete realizations of
the dual of the category of discrete commutative groups. This is a result due to Pontryagin.

We saw last time that for a discrete group G, l1(G) can be embedded densely in a C∗ Algebra.

Let X be a compact Hausdorff space, and let A = C(X). For a closed ideal I, define Ker(I) = {x ∈
X : f(x) = 0∀f ∈ I}. The kernel is a closed subset of X. For any closed subset K of X, define
Hull(K) = {f : f(K) = 0}. This is a closed ideal.

Theorem 50 For A = C(X), Hull(Ker(I)) = I for all closed ideals I.

Definition 51 Let A be a commutative Banach Algebra with 1. Say that A satisfies spectral synthesis if
Hull(Ker(I)) = I for all closed ideals.

Does spectral synthesis hold for l1(Z)? Laurent Schwartz in 1950 showed that spectral synthesis failed for
L1(Rn). In 1958, it was shown that spectral synthesis failed for all L1(G) G not compact.
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Lecture 14. September 26th. Strong Continuity of Representations
of Locally Compact Groups

Let G be a topological group and π be a representation of G on V . Then π is said to be strongly continuous
if for every v ∈ V the function x→ πx(v) is continuous.

Proposition 52 If π is strongly continuous at e, then it is strongly continuous.

Proof: Assume strong continuity at e. Then for any y ∈ G, we have the following. If {x} → y then for
v ∈ V we have πxv = πyv = πy(πy−1xv − πev) since x−1y → e. Since πy is fixed, we have the result.

Proposition 53 If V is a Banach Space and if ∃M so that ‖πx‖ ≤ M for all x, then if π is strongly
continuous on some dense subset S of V , then π is strongly continuous.

Proof: Given V , ε > 0 choose w ∈ S such that ‖v − w‖ ≤ ε/3. Then there is a neighborhood O of e such
that for x ∈ O, ‖πx(w)− w‖ ≤ ε/3.

Then, we have
‖πx(v)− v‖ ≤ ‖πx(v)− πx(w)‖+ ‖πx(w)− w‖+ ‖w − v‖ ≤Mε

Theorem 54 Let G be a locally compact group and let M be a locally compact space. Let α be an action
of G on M , i.e, α maps G into the Homeo(M). If α is jointly continuous, i.e, (x,m) → αx(m) ∈ M is
continuous. Then representation of G on C∞(M) by αx(f) = f(αx−1) is strongly continuous.

Proof: It suffices to show strong continuity on Cc(M) (Since that is a dense subspace of C∞). It suffices to
show strong continuity at e here.

Let f ∈ Cc(M). To show that x → αx(f) is continuous at e. Let K be the support of f . It is com-
pact. Let C ⊂ G be a compact neighborhood of e, with C−1 = C. Since α is jointly continuous, we have
αC(K) is compact. We call this CK.

Let ε > 0 be given. Since α is jointly continuous, for every m ∈ CK there is a neighborhood ØmXUm
of (e,m) with O ⊂ C, such that for (y, n) ∈ OmUm, we have

∥∥f(αy−1)− f(m)
∥∥ < ε/3. The Um’s form an

open cover of CK. So there is a finite subcover, {Umj}. Let O = ∩Omj , open neighborhood of e.

We claim that if x ∈ O, then ‖αx(f)− f‖ < ε. The proof is as follows. Letm ∈M . If ‖f(αx−1(m))− f(m)‖ 6=
0, then either αx−1(m) or m belongs to K. So, m ∈ CK or m ∈ CK. Thus m is in some Umj then
‖f(αx−1(m))− f(mj)‖ < ε/3. But also, ‖f(m)− f(mj)‖ ≤ ε/3. Thus the result follows for any m.
Having concluded the important theorem of this lecture, we move on to some important consequences.

Let M be a locally compact space. By a Radon Measure on M we mean a linear functional on Cc(M)
that is continuous for the Inductive Limit Topology on Cc(M). This comes from: If O ⊂ M is open, O
is compact, C∞(O) embeds into Cc(M) operationally. A net {fα} ⊂ Cc(M) converges to f ∈ Cc(M) for
inductive limit topology for exactly if there is a compact K ⊂ M such that for some α0 have support of
fα ⊆ K if α ≥ α0 and fα → f for the sup norm. We end with a proposition and leave the proof to the
reader.

Proposition 55 If µ is a positive linear functional on Cc(M), i.e, if f ≥ 0 then µ(f) ≥ 0, then µ is a
Radon Measure.
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Lecture 15. September 28th. Radon Measures and Measure Pre-
serving Actions

Let X be a locally compact space. We have Cc(X) and the space of positive radon measures. Given a
positive radon measure µ. For f ∈ Cc(X) set ‖f‖p = µ(|f |p)1/p. This is a seminorm. Let Lp(X,µ) be the
completion of Cc(X) for this seminorm. Let A be any *algebra. We say that µ is a positive linear functional
if µ(a∗a) ≥ 0 ∀a ∈ A. Then define < a, b >µ= µ(a∗b) is a pre inner product.

Now let G be a locally compact group and α an action of G on M a locally compact space. We say
that a Radon Measure on M is α-invariant if ∀x ∈ G, f ∈ Cc(M), µ(αx(f)) = µ(f).

Theorem 56 Then this action extends to a strongly continuous action on Lp(M,µ) for each p, 1 ≤ p <∞.

Proof: Must show that α as an action on Cc(M) is strongly continuous. We showed last time that α as an
acton of Cc(M) is strongly continuous for inductive limit topology. i.e, given f ∃ neighborhood O of e, O is
compact, such that for x ∈ O, ‖f − αx(f)‖∞ < ε.

Then we can choose h ∈ Cc(M) with h ≥ 0 and h = 1 on K, then for x ∈ O, |αx(f) − f |p ≤ εp and
|αx(f)− f |p = h|αx(f)− f |p ≤ εh. So, µ(|αx(f)− f |p) ≤ εpµ(h).

Let G be a locally compact group, and let λ be the left action of G on itself by translation. In 1933,
Haar showed that every locally compact group has a left invariant Borel Measure (subsequently improved to
Radon Measure by Cartan). We shall call these Haar Measures, and study some of their consequences.
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Lecture 16. September 30th. Locally Compact Group Representa-
tions on Banach Spaces

Let G be a locally compact group, µ a left invariant Haar Measure. Let y ∈ G let ρy be the right translation
of the function ρy(f)(x) = f(xy). Define ν on Cc(G) by ν(f) =

∫
ρy(f)(x)dµ(x). Then ν is left invariant,

ν(λzf) =

∫
ρy(xzf)dµ =

∫
λz(ρyf)dµ =

∫
ρy(f)dµ

So ν is a left invariant Haar Measure. So ∃∆(y) ∈ R+ with νg(f) = ∆(y)µ(f) (uniqueness of Haar measure).
∆ is called the modular function of G.

Proposition 57 ∆ : G→ R+ is a continuous group homomorphism.

Definition 58 A group is unimodular if ∆ = 1 i.e, the left Haar measure is right translation invariant.

f →
∫

∆(x)f(x)dµ =
∫
f(x−1)dµ is a right haar measure. δ is the Radon Nikodym derivative of the right

haar measure with respect to the left haar measure.

Let G be a locally compact group, H is a closed subgroup. M = G/H is locally compact, on which G
acts, jointly continuously.

Proposition 59 There is a G invariant measure on G/H exactly if ∆H = ∆Grestricted to H. We get
Lp(G/H) with strongly continuous action of G.

Let G be a locally compact group with Haar Measure µ, let π be a strongly continuous action of G by
isometries on a Banach Space V . We want the integrated form: For f ∈ Cc(G), v ∈ V , set πf (v) =∫
f(x)πx(v)dµ ∈ Cc(G,V ). The author urges the reader to make peace in some form or the other with the

concept of integration on Banach Spaces.
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Lecture 17. October 3rd. On Approximate Identities

Let G be a locally compact group, with a left Haar Measure. Let π be a strongly continuous representation
of G on a Banach Space V , by isometries. Then for f ∈ Cc(G) and v ∈ V , we want to set the integrated
form:

πf =

∫
G

f(x)πxvdx

Note that f(x)πxv ∈ Cc(G,V ), and hence, we assume the reader is familiar with integration with values on
a Banach Space. Let µ be a positive radon measure on M .

For f, g ∈ Cc(G) we have

πf (πgv) =

∫
f(x)πx(

∫
g(y)πyvdy)dx =

∫
f(x)(

∫
g(y)πxyvdy)dx =

∫
f(x)(

∫
g(x−1y)πyvdy)dx

We assume Fubini’s results here. We thus have

πf (πgv) =

∫
(

∫
f(x)g(x−1y)dx)πyvdy

Defining
∫
f(x)g(x−1y)dx = f∗g(y), we have πfπg = πf∗g. We thus have Cc(G) is an algebra for convolution.

‖πfv‖ =

∥∥∥∥∫ f(x)πxvdx

∥∥∥∥ ≤ ∫ |f(x)| ‖πxv‖ dx = ‖f‖l1 ‖v‖

Thus, ‖πf‖ ≤ ‖f‖l1 . We then have that π extends to the completion of Cc(G), namely, L1(G,Haar).
L1(G,Haar) is a Banach Algebra. And π : L1(G) → B(V ) is an algebra homomorphism. However, if G is
not a discrete group, the Haar measure gives individual points measure 0. Then L1(G) does not have an
identity.

Definition 60 Let A be a normed algebra without 1. By a left approximate identity element for A, we mean
a net {eα} of elements in A such that ‖a− eαa‖ → 0 By a right identity, we mean the same thing, except
‖a− aeα‖ → 0 and similarly, a 2 sided identity.

By a bounded left or right or 2-sided approximate {eα}, we need K so that ‖eα‖ ≤ K for all α. We end
with an important proposition:

Proposition 61 For G a locally compact group, Cc(G) has a 2-sided approximate identity of norm 1.

Proof: Let N be a neighborhood system at e. For O ∈ N choose f ∈ Cc(G) f ≥ 0, supp(f) ⊆ O,∫
G
f(x)dx = 1. In the case of C∞(M), with a locally compact M . We have the directed set N of compact

subsets, directed by inclusion. For K ∈ N , choose fK ∈ Cc(M), 1 ≥ fK ≥ 0 and fK = 1 on K. Then for
any g ∈ C∞(M), we have ‖g − fkg‖ → 0 as K goes to infinity.
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Lecture 18. October 5th. The Multiplier Algebra

Let G be a locally compact group. Let N be the directed set of open neighborhoods of e. For each O ∈ N
choose fO ∈ Cc(G), supp(fO) ⊂ O, fO ≥ 0,

∫
G
fO = 1. This is called an approximate delta function.

Proposition 62 Let π : G→ Aut(V ) be a strongly continuous representation on isometries of V , a Banach
Space. Let f → πf be it’s integrated form. Then for any v ∈ V πfOv → v.

Proof: We have the following norm equalities.

‖πfOv − v‖ =

∥∥∥∥∫ fOπxvdx− (

∫
fO(x)dx)v

∥∥∥∥ =

∥∥∥∥∫ fO(x)(πxv − v)dx

∥∥∥∥ ≤ ε

In L1(G), we have (f ∗ g)(x) =
∫
f(y)g(y−1x)dy = (πfg)(x) wherein π is the left translation action on

L1(G). We have that, eO ∗ g → g for all g ∈ L1(G). So, {eO} is a left approximate identity. It is also true
that this a right approximate identity (we leave the details to the reader). We thus have that L1(G) has a
two sided approximate identity of norm 1.

Let A be a normed algebra and let π : A → End(V ) so that ‖πa‖ ≤ ‖a‖.

Definition 63 The representation π is non degenerate if the linear span {{πav} : a ∈ A, v ∈ V } is dense.

Proposition 64 if A has a 2 sided approximate identity {eλ} then π is non degenerate if and only if
πeλv → v for all v ∈ V .

Proof: For any πav, have πeλ(πa)v = πeλav → πav. So for w ∈ span({πav}) we have our result. If span is
dense, we get the desired result from a simple ε/3 argument.

Proposition 65 For G locally compact, and any strongly continuous representation of π of G on a Banach
Space V on isometries, the integrated form of π is a non degenerate representation of L1(G). The author
wonders about the converse.

Let S be a locally compact semi group with e. Define the usual Cc(S). Let M(S) be all the finite C valued
Radon Measures on S, continuous for the infinity norm. M(S) is the dual Banach Space of C∞(S). For
µ, ν ∈M(S) define µ ∗ ν by, for any h ∈ C∞(S), set

(µ ∗ v)(h) =

∫
(

∫
h(xy)dµ(x))dν(y)

∗ is an associative product on M(S) and ‖µ ∗ ν‖′ ≤ ‖µ‖′ ‖ν‖′. This is indeed a fine banach algebra with
identity element: δe.

If G is locally compact, and choose a Haar measure dx, then for each f ∈ L1(G) can be viewed as a
measure f(x)dx, whence L1(G)→M(G) is an isometry. We have the following interesting fact:

Proposition 66 L1(G) is a 2 sided ideal in M(G). And in fact, M(G) is the stone cech compactification
of L1(G).
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For any algebra A without 1, what is it’s β compactification? It is the ”biggest” algebra B with 1 in which A
sits as a 2sided essential ideal. i.e, if b ∈ B and if ba = 0 for all a then b = 0. We lead on to the construction
of the Multiplier Algebra.

If A is a two sided ideal in B, then for all b ∈ B have operators on A, Lb, Rb of left and right multi-
plication on A, with:

1. Lb(aa
′) = Lb(a)a′

2. Rb(aa
′) = aRb(a

′)

3. Rb(a)a′ = aLba
′

Definition 67 A multiplier or a double centralizer of A is any pair (S, T ) of operators on A that satisfy the
above conditions. The collection of double centralizers forms an algebra M(A) in which A sits as a 2 sided
ideal. This is called the Multiplier Algebra.
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Lecture 19. October 7th. Strongly Continuous Representations
and Non-Degenerate Representations

In the spirit of last lecture, we propose that the multiplier algebra of C∞(M) where M is locally compact,
is nothing but Cb(M). We leave it as an exercise. For G locally compact group (not discrete), we have the
multiplier algebra of L1(G) is nothing but the space of finite Radon Measures on G.

Let G be a locally compact, not discrete group. We have that points have Haar Measure 0. Let Gd be
the group with discrete topology, and l1(Gd) is the algebra with convolution. Let, B = L1(G)⊕ l1(Gd). De-
fine ‖f ⊕ F‖ := ‖f‖+ ‖F‖. Given f, δz, we have after some computation that (δz ∗ f)(h ∈ Cc(G)) ∈ L1(G).
We have that L1(G) sits as a 2 sided ideal in G.

So, B is a Banach Algebra with 1, containing L1(G) as a 2-sided ideal. L1(G) has an approximate identity
of norm 1 for itself, from last time. We prove an important theorem here.

Theorem 68 Let B be a banach algebra, and let I be a closed 2-sided ideal in B. Assume I has an
approximate identity of norm 1. If π is a representation of I on a Banach Space V , with ‖π(d)‖ ≤ ‖d‖, and
if π is non degenerate, then π extends uniquely to a representation of B on V .

Proof: We first prove uniqueness, as it gives us a clue for the other part. Suppose π exists, then for b ∈ B,
d ∈ I, v ∈ V , we have

π(b)(πdv) = πb(πdv) = πbd(v) = πbdv

Hence, what pi does on the range of π is completely determined by π. Also, the finite linear combinations
of πdv is dense in V , thus by continuity, it’s uniquely determined.

Now we discuss existence. We try defining π on finite sums by

πb(
∑

πdjvj) =
∑

πbdj (v)

Is this well defined? We need if
∑
πdjvj = 0 then

∑
πbdj (vj) = 0 for all b ∈ B. Let {eλ} be an approximate

identity. Suppose
∑
πdjvj = 0. We then have∑
πbdjvj = lim

λ

∑
πb(eλdj)vj = lim

λ

∑
π(beλ)djvj = lim

λ
πbeλ

∑
πdjvj

Hence we have that it’s well defined. We just need to check one more detail.∥∥∥πb(∑πdj (vj))
∥∥∥ =

∥∥∥∑πbdjvj

∥∥∥ = lim
∥∥∥∑πbeλdjvj

∥∥∥ =
∥∥∥∑πbeλ(

∑
πdj (vj))

∥∥∥ ≤ ‖πbeλ‖ ∥∥∥∑πdjvj

∥∥∥
≤ ‖beλ‖ ≤ ‖b‖

Thus ‖πb‖ ≤ ‖b‖ on the dense subspace. Hence we have the extension.

Let G be locally compact, not discrete. If π is a representation of L1(G) on V . Then π extends uniquely
to a representation π on L1(G) ⊕ l1(Gd), and we have G is embedded inside l1(Gd). So, π|G⊂l1(G) is a
representation of G on V by isometries. ‖πδx‖ ≤ ‖δx‖ = 1.

We wonder why π|G is strongly continuous. We only need to check this on a dense subspace {
∑
πfi(vj)}.

We are aiming to prove the important fact that Strongly continuous representations and non degenerate
representations are in bijection!
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Lecture 21. October 12th. Duals of Locally Compact Groups

Let G be a commutative locally compact group. Choose a Haar measure and form the A = L1(G) algebra.
Consider A = L1(G)⊕Cδe. We are interested in finding the maximal ideal space of the above commutative
Banach Algebra with 1. It is going to consist of homomorphisms of A into C. If A is commutative, we
have one homomorphism with A as the kernel and every other homomorphism restricts to a unique non zero
homomorphism of A into C. We thus symbolically have:

Â = Â ∪ {point at infinity}

Note, Â is compact for the weak-* topology. This gives that Â is the complement of one point in a compact
space, and thus is locally compact. We know that the non zero homomorphisms of L1(G) → C are non-
degenerate representations of L1(G) on C. From previous lectures, these homomorphisms correspond to
strongly continuous representations of G on C, non zero and bounded. These are basically continuous
homomorphisms from G into the circle group T .

ˆL1(G) = Ĝ = ContHom(G,T )

We also have that for the topology of uniform convergence on compact sets of G, saw that Ĝ is a topological
group, and this coincides with the weak* topology.

Let V be a finite dimensional vector space over R with usual topology. Let G = V , forgetting scalar
multiplication. Taking G = Rn, we then have Ĝ = (Rn)′ ∼= Rn. This is the main theorem we shall prove
next lecture. The isomorphism is not cannonical though.
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Lecture 22. October 14th. Inspirations towards Pontryagin Duality

We are interested in showing that R̂ = R. I.e, every φ : R → π continuous group homomorphism is of the
form r → eisr for some real s.

Theorem 69 R̂ ∼= R

Proof: Let φ be given and φ(0) = 1. φ is continuous so find an a such that on (0, a), we have |φ(r)| ≥ 1/2.
So
∫ a

0
φ(r)dr 6= 0. Then for any t ∈ R, we have

φ(t)K := φ(t)

∫ a

0

φ(r)dr =

∫ a

0

φ(r + t)dr =

∫ a+t

t

φ(r)dr

So, φ(t) is differentiable, and we have φ′(t)K = φ(a + t) − φ(t) = (φ(a) − 1)φ(t). So, weh ave φ′(t) =
K−1(φ(a)−1)(φ(t)). So we have the differential equation φ′(t) = Cφ(t) which gives us that φ(t) = eCt+C0.
Substituting the constraints, and the fact that the homomorphism is into the circle T , we have that φ(t) = eist

for some real s.

This concludes the proof. For a general G commutative, let f ∈ L1(G). We have the Gelfand Transform

given by φ ∈ Ĝ, f̂(φ) =
∫
G
f(x)φ(x)dx with the appropriate connotations of φ, respecting the correspondence

between non degenerate representations of the L1 group on V and strongly continuous representations of G
on V . For G = Rn, we have φs(x) = eix.s, s ∈ Rn. Thus, we have

f̂(s) =

∫
Rn
f(x)eix.s

is the fourier transform.

We have that the fourier transform f̂ ∈ C∞(Ĝ) (with the weak* topology). For G = Rn. Want to show that

the weak * topology on R̂n = Rn agrees with the usual topology. We start at that with some bookkeeping.
We have f̂(s) =

∫
f(x)eix.s, f ∈ L1(Rn). By Lebesgue Dominated Convergence theorem, f̂ is continuous.

We also have the Riemann Lebesgue Lemma: f̂ vanishes at ∞. We prove this (for R) first for f(x) = χ[a,b],
and then for finite linear combinations, which forms a dense subspace.

We then have that every f̂ for f ∈ L1(Rn) extends continuously to the 1-pt compactification of Rn, with

f̂(∞) = 0. So, Rn(Usual Topology) → Rn(Weak* Topology). By definition, f̂ is continuous for the weak*
topology, this concludes the proof.

Let G be a locally compact commutative group. Ĝ = {φ : G → T}. On L1(G), have ∗, f∗(x) = f(x−1).

After some computation, we have as before, f̂∗ = f̂ . We have the range of the Fourier Transform on L1(G)
is dense in C∞(Ĝ), by Stone Weierstrass. Yet again, we want that fourier transform is injective.

L1(G) is represented faithfully on L2(G). Let C∗(G) = C∗-Algebra generated by the range of this rep-
resentation. We have

L1(G)→ C∗(G)→ Closure(C∗(G)) ∼= C(X)

for some compact hausdorff X. If f 6= 0, then λf 6= 0, so λ̂f ∈ C(X), which means there exists some φ ∈ X
so that λf (φ) 6= 0. This completes the proof.

Let G be compact commutative. Let φ ∈ Ĝ. φ ∈ L1(G). Consider from the invariance of Haar mea-
sure,

∫
G
φ(x)dx =

∫
φ(xy)dx =

∫
φ(x)φ(y)dx = φ(y)

∫
φ(x)dx. Hence, if ∃y with φ(y) 6= 1, then we
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have
∫
φ(x)dx = 0. If φ, ξ ∈ Ĝ., we have φ, ξ ∈ L2(G). < φ, ξ >=

∫
φ(x)ξ(x)dx =

∫
(φξ)(x)dx = 0

if φξ 6= 1, i.e, φ 6= ξ. View φ ∈ L1(G), φ̂(ξ) =
∫
φ(x)ξ(x)dx =

∫
φξ(x)dx = 0 if φ 6= ξ. Thus

φ̂((φ)) =
∫
φ(x)φ(x)dx = ‖1‖1 = ‖1‖2. Thus, if G is compact, then Ĝ is discrete, and if G is discrete,

Ĝ is compact. This builds to a much harder result, the Pontryagin duality:
ˆ̂
G = G.
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Lecture 23. October 16th. Detour to Spectral Mapping Theorem

Let A be a unital Banach Algebra over C. Let a ∈ A, and let f be a C valued function defined and holo-
morphic on an open set O of C with σ(a) ⊂ O. We want to define f in the following way.

Suppose σ(a) = C1 t C2. Let O1 and O2 be disjoint open sets with Oi containing Ci. Define f on O
by f(z) = 1 if z ∈ O1 and 0 if z ∈ O2. (we want something like f(a) = p where p2 = p, i.e, projection).

Let γ be a finite collection of closed piecewise smooth paths inO that surround the σ(a) so that 1
2πi

∫
γ

1
z−wdz =

1 if w ∈ σa and 0 outside γ. Define f(a) = 1
2πi

∫
γ
f(z)
z−adz.

Let H(O) be the algebra of holomorphic functions on O. We have the following theorem:

Theorem 70 f → f(a) is a unital algebra homomorphism from H(O) into A.

We also have,

‖f(a)‖ ≤ 1

2π

∫
γ

|f(z)|
∥∥(z − a)−1

∥∥ dz ≤ ‖f‖inγ sup
z∈γ

∥∥(z − a)−1
∥∥ length(γ)

If fn ∈ H(O), and fn → f uniformly on γ, then fn(a)→ f(a) in norm. (f(a) does not depend on choice of γ).

Proof: Independence from path: Let γ1 and γ2 be two paths. Can find γ3 that is inside both γ1 and
γ2. Thus it suffices to do for γ2 inside γ1,

∫
γ1
−
∫
γ2

= 0?

But this is true if and only if
∫
γ1−γ2 = 0. But, z → f(z)(z − a)−1 between the two curves is holomor-

phic between γ1 and γ2. Thus we have the result from Cauchy’s theorem (after sufficiently applying to an
element of the dual Banach Space, to avoid issues with domain of cauchy’s theorem). This map is obviously
linear. But we wonder why it is an algebra homomorphism. This is slightly non trivial.

We have the following:

f(a)f(b) =

(
1

2πi

∫
γ1

f(z1)(z1 − a)−1dz1

)(
1

2πi

∫
γ1

g(z2)(z2 − a)−1dz2

)

=
1

2πi

2 ∫
γ1

∫
γ2

f(z1)g(z2)(z1 − a)−1(z2 − a)−1dz1dz2

But we know that (z1 − a)−1 − (z2 − a)−1 = (z1 − a)−1(z2 − z1)(z2 − a)−1. Assuming that γ2 is inside γ1,
we continue:

1

2πi

2 ∫
γ1

∫
γ2

f(z1)g(z2)
(z1 − a)−1

z2 − z1
dz1dz2 −

1

2πi

2 ∫
γ1

∫
γ2

f(z1)g(z2)
(z2 − a)−1

z2 − z1
dz1dz2

=

∫
γ1

(∫
γ2

g(z2)

z2 − z1
dz1

)
(z1 − a)−1f(z1)dz1 +

∫
γ2

(∫
γ1

f(z1)

z2 − z1
dz1

)
(z2 − a)−1g(z2)dz2

=
1

2πi

(
0 +

1

2πi

∫
γ2

f(z2)g(z2)(z2 − a)−1dz2

)
= (fg)(a)

Once we have finished the proof, the following proposition (spectral mapping) follows:
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Proposition 71 σ(f(a)) = f(σ(a))

Proof: Let λ ∈ σ(a). Then, f(z) − f(λ) is holomorphic (0 at z = λ). Thus, this is (z − λ)g(z) for some
holomorphic g. Thus, f(a)− f(λ) = (a− λ)g(a). If the LHS were invertible, then (a− λ) is invertible which
is a contradiction. Thus, f(σ(a)) ⊆ σ(f(a)). For the other inclusion, we have the following:

If λ /∈ f(σ(a)), then, f(z)− λ is not 0 on σ(a). So, (f(z)− λ)−1 is holomorphic on σ(a). So (f(a)− λ)−1 so
λ /∈ σ(f(a))
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Lecture 24. October 19th. On Approximate Eigenvectors

We start with a remark. We consider G is locally compact commutative, L1(G), Ĝ and f → f̂ ∈ C∞(Ĝ).
Consider Cc(G) ⊂ L1(G) ∩L2(G) is a subalgebra of L1(G) for convolution. We have the following theorem.

Theorem 72 (Plancheral) For a suitable choice of Haar measure on Ĝ, find that for f ∈ L1(G)∩L2(G),

have f̂ ∈ L2(Ĝ)∩C∞(Ĝ) and
∥∥∥f̂∥∥∥

2
= ‖f‖2. Thus, f → f̂ extends to a unitary operator from L2(G)→ L2(Ĝ).

Now, we look more closely at operators on Hilbert Space, to get a different treatment of the theory that we
have built.

Let V be a vector space over C. Define a Sesquilinear form, to be one that is linear in the first vari-
able and conjugate linear in the second (Not required to be positive). We have the following polarization
identity, inspired from physics, as one would think.

Theorem 73 (Polarization) For ξ, ψ ∈ V , < ξ, ψ >= 1
4

∑3
k=0 i

k < ξ + ikψ, ξ + ikψ >

Let T ∈ B(H), a bounded operator on a Hilbert Space over C.

Proposition 74 If < Tξ, ξ >= 0 for all ξ ∈ H, then T = 0.

Proof: Define a sesquilinear form given by < ξ, ψ >′=< Tξ, ψ >. From the polarization identity, we have
< ξ, ψ >′= 0, and thus, < Tξ, ψ >= 0 for all ξ and ψ, as desired.

Proposition 75 If < Tξ, ξ >∈ R for all ξ, then T is self adjoint.

Proof: < Tξ, ξ >=< ξ, T ∗ξ >=< T ∗ξ, ξ >. Thus, we have T − T ∗ = 0 from the previous proposition.

Proposition 76 For T ∈ B(H) we have Ker(T ) = range(T ∗)⊥

Proof: If ξ ∈ ker(T ), we have T (ξ) = 0 ⇔ < Tξ, ψ >= 0 for all ψ, ⇔ < ξ, T ∗ψ >= 0
⇔ ψ ∈⊥ (range(T ∗))

Proposition 77 Let T ∈ B(H). If there are a, b ∈ R, a > 0, b > 0 such that ‖Tξ‖ ≥ a ‖ξ‖ for all ξ, and
‖T ∗ξ‖ ≥ b ‖ξ‖ for all ξ, then T is invertible in B(H).

Proof: If Tξ = 0, then from the first inequality, we have ξ = 0. Hence, T is injective. Similarly, T ∗ is
injective. But Ker(T ) = (range(T ))⊥ ⇒ range(T ) is dense in H. Also, if ξ ∈ range(T ), ‖ξ‖ = ‖TT ∗ξ‖ ≥
a
∥∥TT−1ξ

∥∥ ≥ a ∥∥TT−1ξ
∥∥ ≥ a ∥∥T−1ξ

∥∥. Since T−1 is bounded on the range of T , we have that T−1 extends,
which concludes the proof.

We have the following immediate consequence:

Proposition 78 Let T ∈ B(H). If T is not invertible, then either

1. There is a sequence {ξn}, ‖ξn‖ = 1 for all n, and Tξn → 0

2. There is a sequence {ξn}, ‖ξn‖ = 1 for all n, and T ∗ξn → 0
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Corollary 79 Let T ∈ B(H). If λ ∈ σ(T ), then, ∃{ξn}, ‖ξn‖ = 1 with T (ξn)−λξn → 0, or ∃{ξn}, ‖ξn‖ = 1
with T ∗(ξn)− λξn → 0. We then say (in the first case), ξn is an approximate λ eigenvector for T .

Let T ∈ B(H) with T normal. Then for any ξ ∈ H, ‖T ∗ξ‖ = ‖Tξ‖. This is an immediate consequence. This
gives us the following punchline of the lecture:

Theorem 80 Let T ∈ B(H), T is normal, then if λ ∈ σ(T ), then there exists a λ approximate eigenvector
for T .
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Lecture 25. October 21st. Non Degenerate Representations, and
Cyclic Vectors

We start with the definition of ”positivity”.

Definition 81 For T ∈ B(H), we say that T is positive (T ≥ 0) if < Tξ, ξ >≥ 0 for all ξ (note that this
automatically implies T is self adjoint).

Proposition 82 For T ∈ B(H), the following are equivalent:

1. T ≥ 0

2. T is self adjoint and σ(T ) ∈ R+

3. ∃S ∈ B(H), S∗ = S, T = S2

Proof: For 1⇒ 2: If λ ∈ σ(T ), then ∃{ξn} with norm 1 such that (T−λ)ξn → 0. Then, < (T−λ)ξn, ξn >=<
Tξn, ξn > − < λξx, ξn >→ 0, it immediately follows that λ ≥ 0

For 3⇒ 1: < Tξ, ξ >=< S∗Sξ, ξ >=< Sξ, Sξ >≥ 0.

For 2 ⇒ 3: Let A = C∗ Subalgebra generated by T and I. Then A ∼= C(σ(T )), given by the map
T → (t→ t). By continuous functional calculus, we have t→

√
t corresponds to an operator S in A, and S

is non negative and satisfies our requirement.

Given an abstract C∗ Algebra, A, given a, say a ≥ 0 if a∗ = a and σ(a) ∈ R+, equivalently a = b2

and b∗ = b. We remark here that showing that sums of positive elements is positive, is really a non trivial
statement.

Let H be a Hilbert Space, S is a subset of B(H), self adjoint i.e, T ∈ S then T ∗ ∈ S.

Definition 83 A subspace K of H is S−invariant if ξ ∈ K ⇒ Tξ ∈ K for all T ∈ S.

We have an immediate consequence:

Proposition 84 If K is S− invariant, then so is K⊥.

Definition 85 A closed subspace K is S-irreducible if K contains no proper S invariant subspaces.

Let A be a *Algebra and π a *-representation of A on H, i.e, π : A → B(H), non-degenerate, then choose
ξ ∈ H, ξ 6= 0, let K = {π(a)ξ}. We say that K is a π-cyclic subspace of H, and ξ is a cyclic vector for this
subspace.

We end the lecture with an important proposition:

Proposition 86 For any non-degenerate *=representation of A on a Hilbert H, can find a family of mutually
orthogonal cyclic- A-invariant subspaces, {Kλ} such that H = ⊕λKλ.

Proof: Mimic the existence of basis proof, using Zorn’s lemma.
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Lecture 26. October 24th. Pre Inner Product Derived from Posi-
tive Linear Functionals

We start first by discussing direct sums of Hilbert Spaces.

Let Λ be an indexing set. For each λ ∈ Λ, let Hλ be a Hilbert Space. Then, ⊕λ∈ΛHλ = {(ξλ)λ∈Λ :∑
‖ξλ‖2 < ∞}. Define < (ξλ), (φλ) >=

∑
< ξλ, φλ >Hλ . Why is ⊕Hλ complete? We look at the space of

Complex valued functions on Λ, l2(Λ), this is complete, and the same steps follow for the completeness of
our direct sum.

Now, consider {Tλ}, Tλ ∈ B(Hλ). Define ⊕Tλ on ⊕Hλ by (⊕Tλ)(ξλ) = (Tλξλ). This is well defined
only if there exists k such that ‖Tλ‖ ≤ k for all λ. (Then, ‖⊕Tλ‖ ≤ k)

If A is a *-Algebra, and if πλ is a *-representation of A on Hλ, then define ⊕πλ by (⊕πλ)(a) = ⊕πλ(a) ∈
B(⊕Hλ) if there is a constant k such that ‖πλ(a)‖ ≤ ka for all λ, ‖⊕πλ(a)‖ ≤ ka. We now get more specific:

If A is a normed *-algebra, then if there exists k so that ‖πλ‖ ≤ k for all λ, then ⊕πλ(a) ∈ B(⊕Hλ),
and ‖⊕πλ(a)‖ ≤ k ‖a‖, furthermore, a→ ⊕πλ(a) is a *-representation of A on ⊕Hλ.

For a while, assume that A has 1A, and that for any representation π, π(1A) = IH. Now let π be a
representation of A on a Hilbert Space, A is *-normed with 1 and ‖π‖ ≤ k. Let H = ⊕Hλ be a cyclic de-
composition of H for π(A), with cyclic vectors ξλ. Let πλ be the restriction of π to Hλ, so that ‖πλ‖ ≤ ‖π‖.
We then have π′ = ⊕πλ is a *-representation of A.

Definition 87 Let (π,H), (π′,H′) be *-representations of S, say that they are unitarily equivalent if there
is a unitary operator U : H → H′ such that, U(π(a)ξ) = π′(a)(Uξ).

We have in our case, (H, π) is unitarily equivalent to (⊕Hλ, πλ). Let A be a unital *-Algebra and let
(H, π) be a representation of A, and let ξ ∈ H, ξ 6= 0. Define µ : A → C by µ(a) =< π(a)ξ, ξ >. Then,
µ(a∗a) =< π(a∗a)ξ, ξ >=< π(a)ξ, π(a)ξ >≥ 0. This leads us to make the following definition:

Definition 88 A linear functional µ on A is positive if µ(a∗a) ≥ 0 for all a ∈ A. If µ(1A) = 1, then µ is a
state (analagous to a probability measure).

Let µ be some positive linear functional on A. For any a, b ∈ A, set < a, b >µ= µ(b∗a). Then, <>
is a pre inner product. We just check here the proof of < b, a >µ= < a, b >µ. For some z ∈ C, we have

< a+zb, a+zb >µ= µ((a+zb)∗(a+zb)) ≥ 0. But, this is nothing but µ(a∗a)+zµ(b∗a)+zµ(a∗b)+‖z‖2 µ(b∗b)
which belongs to R. This, zµ(b∗a) + zµ(a∗b) ∈ R. Taking z = 1, i gives us our result.

Factor A by Nµ = {a :< a, a >µ= 0} so that we get an inner product on A/Nµ. Taking the comple-
tion, we get a Hilbert space L2(A, µ). Let L be the left regular representation. We have < Lab, c >µ=<
ab, c >= µ(c∗(ab)) = µ((a ∗ c)∗b) =< b, a∗c >µ=< b,La∗c >. So, a→ La is a *-representation.
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Lecture 27. October 26th. Gelfand-Naimark-Segal Construction

Let A be a *-Algebra with 1. We have defined earlier what a positive linear functional is. Let µ be pos-
itive. We have also defined < a, b >µ= µ(b∗a). Look at < La(b), c >µ=< b,L∗a(c) >µ. Let Nµ = {a ∈
A :< a, a >µ= 0}. Then we have from the Cauchy Schwartz inequality (works for pre-inner products too),
Nµ = {a ∈ A :< a, b >µ= 0∀b ∈ A}. Thus, Nµ is a linear subspace of A. In fact, Nµ is carried into itself by
the Left regular representation. Given a ∈ Nµ, b ∈ A, < Lba, c >µ=< a, b∗c >µ= 0. In other words, Nµ is
a left ideal in A. Thus, < ., . >µ drops to an inner product on A/µ. Let L2(A, µ) be the completion of this
quotient space. This is a Hilbert Space.

Here is a key proposition:

Proposition 89 1. If A is a Banach *-Algebra with 1, then any positive linear functional µ on A is
continuous with ‖µ‖ = µ(1).

2. If A is a normed *-Algebra with 1 and if µ us a continuous positive linear functional on A, then
‖µ‖ = µ(1).

And further, as in 1, 2, left regular representation on A/µ satisfies ‖La‖ ≤ ‖a‖. (note, proving 1 is more
than sufficient)

Proof: Let first a ∈ A with a∗ = a, ‖a‖ ≤ 1. Consider the function f on C defined by f(z) = (1 − z)1/2

is holomorphic on {‖z‖ < 1}. So, there’s a power series
∑
αnx

n converging absolutely for any z, |z| < 1.
Since f(z) is to have values in R for z ∈ R ∩ {|z| < 1}, αn ∈ R for all n. Let b = f(a). Since a∗ = a and
αn ∈ R, we get b∗ = b. Also, b2 = 1− a and µ(1− a) = µ(b ∗ b) ≥ 0, so µ(1) ≥ µ(a). We do the same thing
to −a to get µ(1) ≥ ‖µ(a)‖ as desired. For any a ∈ A with a∗ = a, we just consider a

‖a‖+ε and apply the

above arguments. We get |µ(q)| ≥
∥∥∥µ( a

‖a‖+ε )
∥∥∥, so |µ(a)| ≤ ‖a‖µ(1). Now, finally, for any b ∈ A, we have

|µ(b)|2 = | < b, 1 >µ | ≤< b, b >µ< 1, 1 >µ≤ ‖b∗b‖ (µ(1)2) ≤ (‖b‖µ(1))2.

Now, to complete the last part of the proposition, i.e, the left regular representation is by bounded op-
erators on A/Nµ, < ., . >µ.

Let a, b ∈ A. Consider Lab. < Lab, Lab > µ =< ab, ab >µ= µ(b∗a∗ab). Now define ν by ν(c) = ν(b∗cb). We
then have that < Lab, Lab > µ = ν(a∗a). Then, ‖ν‖ ≤ ν(1). Hence, ν(a∗a) ≤ ‖a∗a‖ ν(1) = ‖a∗a‖µ(b∗b) =

‖a∗a‖ < b, b >µ= ‖a‖2 < b, b >µ.
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Lecture 28. October 28th. Unitary Equivalence Classes for Positive
Cyclic Representations

Let A be a *-normed algebra, unital. And µ is a continuous positive positive linear functional. As in GNS,
we have a pre inner product < a, b >µ= µ(b∗a) and the respective ”null vectors” space Nµ. We consider the
norm completion of A/Nµ, L2(A, µ), and a→ La is a bounded ∗ representation.

Define ξ0 ∈ L2(A, µ) to be the image of 1A. Then, {Laξ0 : a ∈ A} is the image of A in L2(A, µ), and
is therefore dense. Thus, ξ0 is a cyclic vector.

We say that the positive linear functional associated with ξ0 to be < Laξ0, ξ0 >=< a, 1 >µ= µ(a).

Proposition 90 Let (H, π, ξ0) and (K, ρ, φ) be two cyclic representations of A with cyclic vectors ξ0, φ0.
Let µ be the positive linear functional for ξ0 and ν for φ0. If ν = µ, then there exists a unitary operator
U : H → K such that Uξ0 = φ0, and U is an ”intertwining operator” for π and ρ. i.e, U(π(a)ξ) = ρ(a)Uξ
for all ξ ∈ H, and U(aξ) = a(Uξ).

Proof: Try to define U on {π(a)ξ0 : a ∈ A} ⊆ H by U(π(a)ξ0) = ρ(a)φ0. Is this well defined? We
need to show that if π(a)ξ0 = 0, then ρ(a)φ0 = 0. Note, < Uπ(a)ξ0, Uπ(b)ξ0 >=< ρ(a)φ0, ρ(b)φ0 >=<
ρ(b∗a)φ0, φ0 >= ν(b∗a) = µ(b∗a) =< π(b∗a)ξ0, ξ0 >=< π(a)ξ0, π(b)ξ0 >.

Definition 91 A pointed representation of A is a (H, π, ξ0) with ξ0 a cyclic vector. We also define two
pointed representations to be unitarily equivalent if there exists a unitary intertwining operator as seen above.

We end the lecture with a statement that there is a bijection between continuous positive linear functionals
on A and unitary equivalence classes of positive cyclic representations.
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Lecture 29. October 30th. Preview to Borel Functional Calculus

We start by remarking that the literature in physics uses different terminology, i.e, ”mixed states” for our
usual definition of states, and ”states” for our usual definition of extreme points (in the convex compact set
of states). We state an important theorem:

Theorem 92 Let A be a normed *-algebra, unital, and let (H, π) be a non-degenerate *-representation of
A, then there is a collection of {φλ} of positive linear functionals (continuous) on A such that (H, π) is
unitarily equivalent to ⊕λ(Hφλ , πφλ) (GNS representation for φλ).

In the case of A is commutative, we have the following examples:

• Let T be a normal operator on a Hilbert Space H. Let A = C∗(T, I). We want to know how does A,
and in specific, T act on H.

• Let T1, T2, T3, ..., Tn be self adjoint operators on H and assume they commute with each other.

• G is locally compact abelian group. Let (H, U). We are interested in C∗(UL1(G), IH).

Let (H, π, ξ) be a cyclic representation of A. Consider C∗(π(a)) = B. B is commutative and in fact,

B = C(B̂). ξ is still a cyclic vector for the action of B (because it’s smaller). Let φξ be the positive linear

functional on B associated with ξ. Can view φξ as a positive radon measure on C(B̂). Then representation

of B on H is unitarily equivalent to representation of B on L2(B̂, φξ).

In the case of G is locally compact commutative group, we have ˆL1(G) = Ĝ = {φ : G → T}. Let (H, U, ξ)
be a cyclic representation of L1(G), so corresponds to a representation π of G on H. Let φξ be a Radon

Measure on Ĝ. We have (H, π) is unitarily equivalent to L2(Ĝ, µξ), where π(f) is pointwise multiplication

by f̂ . For x ∈ G, πx acts by pointwise multiplication by the function on Ĝ given by x̂(φ) = φ(x).
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Lecture 30. November 4th. Borel Functional Calculus and Projec-
tion Valued Measures

Starting off with a preview: Let T ∈ B(H), T self adjoint and σ(T ) = R. Then, we have from G-
N, C∗(T, I) ∼= C(σ(T )). Let H = ⊕Hλ, cyclic subspaces for T , i.e, for C∗(T, I) = A. For each λ,
Hλ ∼= L2(σ(T ), µλ), with cyclic vector ξ0 = 1, with C(σ(T )) acts by pointwise multiplication: T acts
by f(t) = t.

H as a representation of C∗(T, I) is isomorphic to ⊕λL2(σ(T ), µλ). Let B be the algebra of bounded C
valued Borel Functions on σ(T ). For F ∈ B, let it act by pointwise multiplication on each L2(σ(T ), µλ). So,
B is realized as an algebra of operators on H, and C(σ(T )) ⊆ B. For f in C(σ(T )), we had the continuous
functional calculus, such that f acts on H. The Borel functional calculus extends the continuous functional
calculus.

For each t ∈ R, define χ(−∞,t]|σ(T ) ∈ B. Let Et = χ(−∞,t](T ). Et is a projection operator, i.e, E2
t = Et and

E∗t = ET . Note that t→ Et is non decreasing, i.e, if t1 > t0 then Et1 ≥ Et0 , i.e, Et1Et0 = Et0 .

Lemma 93 If fn is a sequence of elements of B such that ∃k, ‖fn‖∞ ≤ k, and Fn converges to F ∈ B
pointwise, then Fn(T ) converges to F (T ) for the strong operator topology, i.e, Fn(T )ξ → F (T )ξ for the norm
of H.

Proof: Suffices to treat the case when F = 0. Suffices to check for ξ ∈ Hλ for some λ. We have

‖F (T )ξ‖2 =

∫
σ(T )

|Fnξ|2dµλ =

∫
|Fn|2|ξ|2(∈ L1)→ 0

from Lebesgue Dominated Convergence Theorem.

Let tn ∈ σ(T ), tn decreases to t0. Then, Etn decreases to Et0 for strong operator topology. We ”can”
integrate continuous R valued functions, then T =

∫
σ(T )

tdE(t). For any Borel set S of σ(T ), χS(T ) is a

projection. Such projections are called ”Spectral Projections” for T .

The function S → χS(T ) is a ”Projection Valued Measure” (for S ∈ Borel − sets).

If T1, ..., Tn are commuting self adjoint (or normal) operators on H, then C∗(T1, ..., Tn, I) ∼= C(X). X
is the joint spectrum of T1, T2, ...Tn. For any Borel set S, view ξS as an operator on H, S → χS as an
operator is a projection valued measure.
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Lecture 31. November 7th. On Compact Operators

We conclude our discussion on the Spectral Theorem with a few remarks. Let A be a commutative *-
normed algebra with 1, and if (H, π) is a non-degenerate continuous *-representation of A. We saw that
H ∼= ⊕jL2(Âsa, µj) where ”sa” denotes self adjoint. For any bounded Borel Function F on X, it gives an
operator on H by pointwise multiplication on each L2(X,µj). For each Borel set S, χS gives a projection
operator.

For A a commutative C*-Algebra in B(H), A ∼= C(X) for some compact hausdorff space X. Suppose
A has 1. Let (H, π) be non degenerate *-representations of A. Assume H is seperable, then there are
positive finite Borel measures on Â, µ1, ..., µ∞ mutually disjoint, such that

(H, µ) = L2(Â.µ1)⊕ (L2(Â.µ2)⊕ L2(Â.µ2))⊕ (L2(Â.µ3)⊕ L2(Â.µ3)⊕ L2(Â.µ3))⊕ . . .

With the above statement on multiplicity, we conclude this section of the class on the Spectral Theorem.

Now, we begin our discussion on Compact Operators. Let X and Y be Banach Spaces and let B(X,Y ) be
the Banach Space of bounded operators from X to Y .

Definition 94 T ∈ B(X,Y ) is compact, i.e, belongs to B0(X,Y ) if T (Ball1(X)) is a compact subset of Y .
Equivalently, if T (Ball1(X)) is totally bounded.

Example: Finite rank operators. Note, the range is finite dimensional, and therefore the closed unit ball is
compact.

Example: Many typical integral operators. Let M , N be measurable spaces. Let K be a measurable
function on M x N . Define an operator TK by TK(ξ)(n) =

∫
K(n,m)ξ(m)dµ(m)

Example: Let (M,d) be a compact metric space. For f ∈ C(M), let Ld(f) be continuous Lipschitz constant.
Let Ld(M) = {f ∈ C(M) : L(f) < ∞}. On Ld(M) put norm ‖f‖d = ‖f‖∞ + Ld(f). Then, Ld(M) is a
Banach Algebra for pointwise multiplication and the above norm. Let T : Ld(M)→ C(M) be the inclusion
with the sup-norm. Then T is a compact operator. This requires the use of Ascoli Arzela theorem.

We now discuss some basic properties of compact operators. Let B0(X,Y ) be the space of compact operators
from X to Y .

Proposition 95 If T ∈ B0(X,Y ) then

1. If S ∈ B(Y,Z) then S(T ) is a compact operator.

2. If S ∈ B(Z,X) then T (S) is a compact operator.

Let (M,d) be a metric space. A subset E of M is totally bounded if for every ε > 0, E can be covered by a
finite number of balls of radius ε. Any compact subset is totally bounded. Also, if (M,d) is complete, then
the closure of a totally bounded set is compact.

Proposition 96 If T ∈ B0(X,Y ) and α is a scalar then αT ∈ B0(X,Y ).

Proposition 97 Let S, T ∈ B0(X,Y ). Then S + T ∈ B0(X,Y ).

The proof of the above lemma follows from the fact that if E and F are totally bounded subsets of Y , then
E + T is totally bounded (translation of the balls and a triangle inequality argument).
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Lecture 32. November 9th. On B0(V,W ) and Integral Operators

We define B0(V,W ) to be the linear space of compact operators. In fact, B0(V,W ) is a B(W ) − B(V )
bi-module. In particular, B0(V ) is a 2-sided ideal in B(V ).

Proposition 98 B0(V,W ) is norm closed.

Proof: Let {Tn} ⊂ B0(V,W ), suppose Tn → T in norm. Let ε > 0 be given. Choose N such that for n ≥ N ,
we have ‖T − Tn‖ < ε/2. For TN choose v1, v2, ..., vk ∈ V such that the open ε/2 balls about TNv1, ...TNvk
cover the image of the unit ball. Then the epsilon balls about these vectors will cover T (V1) as required from
triangle inequality.

Let F (V,W ) be the set of finite rank operators from V to W . These are obviously compact. It is not
difficult to see that F (V ) is a minimal non trivial 2-sided ideal in B0(V ). The question one is interested in
is if F (V ) = B0(V ). We now look at an important class of examples of compact operators, called Integral
Operators (under some conditions of course).

Suppose (X,µ), (Y, ν) are measure spaces. Let K be a measurable function on X × Y for the prod-
uct measure. We try to define an operator TK by TK(ξ) =

∫
K(x, y)ξ(y)dν(y). We have ‖(TKξ)(x)‖ ≤

‖y → K(x, y)‖p ‖ξ‖q. Following it up with Fubini’s theorem, we have ‖Tξ‖p ≤ ‖K‖p ‖ξ‖q.

Proposition 99 If K ∈ Lp(X × Y, µ× ν) then TK ∈ B(Lq(Y ), Lp(X)) and ‖Tk‖ ≤ ‖K‖p.

Proposition 100 TK ∈ B0(Lq(Y ), Lp(X))

Proof: Let A ⊂ X, B ⊂ Y be subsets of finite measure. Let KA,B(x, y) = χA×B(x, y) = χA(x)χB(y). Then
(TKABξ)(x) =

∫
KAB(x, y)ξ(y)dν(y) = χA(x) < χB , ξ >, so that TAB is a rank one operator. Finite linear

combinations of these give simple integrable functions. So if K is an SIF, then TK is a finite rank operators.
Such functions are norm dense in Lp, and this concludes the proof.
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Lecture 33. November 11th. Density of Finite Rank Operators

Let G be a compact group. Let λ be the left regular representation on L2(G), f → λf its integrated form
as a representation of L1(G).

Proposition 101 Then for each f , λf is a compact operator.

Proof: Let f ∈ C(G), then for each ξ ∈ L2(G), λfξ(x) =
∫
f(y)ξ(y−1x)dy =

∫
f(xy−1)ξ(y)dy. Let

Kf (x, y) = f(xy−1). We claim that this kernel is in L2(G × G). Note, ‖Kf‖2 =
∫
|Kf (x, y)|2dxdy =∫

‖f‖22
∫

1dy. Thus, Lf is compact since C(G) is dense in L1(G). The result follows.

Let V be a banach space.

Proposition 102 Let {Sα} be a net in B(V,W ) that converges in SOT to S ∈ B(V,W ) and assume there
is a constant k such that ‖Sα‖ ≤ k for all α. Let T ∈ B0(U, V ). Then SαT → ST in norm.

Proof: Given ε > 0 find u1, ..., un ∈ U such that the balls of radius ε/2K around TUj cover T (Unit ball of U).
Since Sα → S in SOT, can find α0 such that ‖SαTuj − STuj‖ < ε/2. Then for any u, ‖a‖ ≤ 1, ∃j0 such that
‖Tu− Tuj‖ ≤ ε/2K. Then, ‖STu− Sα0

Tu‖ ≤ ‖S‖ ‖Tu− Tuj‖+‖STuj0 − SαTuj0‖+‖SαTuj0 − SαTu‖ ≤
ε as required.

Proposition 103 Let V be a banach space. If there is a net {Sα} ∈ B(V ) such that ∃K with ‖Sα‖ ≤ K
for all α and if each Sα is a finite rank operator, and if Sα → IV for SOT, then the finite rank operators are
dense in B0(V ).

We now consider an example. Let X be a set with counting measure. Consider lp(X) for 1 ≤ p < ∞. For
each finite subset A ⊂ X, let PA be the projection in B(lp(X)) of pointwise multiplication by χA. Order
finite sets by inclusion. The {PA} is a net of finite rank operators of each norm 1. This net converges to Ilp

for the SOT. In particular, any Hilbert Space is isomorphic to an l2 space.

Let X be a compact set, V = C(X) with the sup norm. Let U be the set of all finite open covers of
X ordered by: if u, v ∈ U say u ≤ v if every element of v us contained in an element of u. This makes U
into a directed set. For each u ∈ U , let {φθ}θ∈u, (φθ ∈ C(X)) be a partition of unity for U , i.e, for each
θ the support of φθ ⊆ θ and each φθ ≥ 0, and

∑
θ∈U φθ = 1. For each θ, let xuθ be some point in θ, given

u, define Tu ∈ B(C(X)) by Tuf =
∑
θ∈u f(xuθ )φuθ ∈ C(X). Furthermore, Tu is finite rank. We claim that

Tu → IC(X) for SOT.
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Lecture 34. November 16th. Schander’s Theorem and Spectra of
Compact Operators

We start with stating Schander’s theorem which is a fundamental result in the theory of compact operators.

Theorem 104 Let V,W be banach spaces and let T ∈ B0(V,W ). Then T ∗ is compact (i.e, ∈ B0(W ∗, V ∗))

Proof: Assume ‖t‖ ≤ 1 so that T maps the unit ball into the unit ball of W . View the unit ball of
W ∗ as functions on the unit ball of W . As such functions, ball1(W ∗) is uniformly equicontinuous, i.e, if
w1, w2 ∈ ball1(W ) and φ ∈ ball1(W ∗), then |φ(w1 − w2)| = |φ(w1)− φ(w2)| ≤ ‖w1 − w2‖.

Look at the closure of the image of the unit ball of V under T . It is a norm-compact subset of ball1(W ). So
can view ball1(W ∗) as functions on T (ball1(W ∗)), is uniformly equicontinuous (bounded by 1). So by Ascoli
Arzela, this set of functions is totally bounded. Thus, given an ε > 0, we can find φ1, ..., φk such that the ε
balls about the φj ’s cover ball1(W ∗) as functions on T (ball1(V )).

Thus given φ ∈ ball1(W ∗) there is a j such that |(φ−φj)Tν| ≤ ε for all ν ∈ ball1(V ). So, ‖T ∗φ− T ∗φj‖ ≤ ε
as required. We leave the proof of the converse as an exercise.

Let V be a banach space. T ∈ B0(V ), let λ be an eigenvalue for T , λ 6= 0. Let Vλ be the λ eigensub-
space for λ.

Proposition 105 Then T |Vλ is finite dimensional.

Proof: T |Vλ = λIVλ ⇒ T |Vλ is compact. Hence Vλ is finite dimensional.

Theorem 106 Let T be a compact operator in the bounded operators on Hilbert Space H, with T normal.
Then for any λ ∈ σ(T ), λ 6= 0, λ is an eigenvalue, i.e, there exists a corresponding eigenvector.

Proof: Since λ ∈ σ(T ) there is a sequence {ξn} in H with ‖ξn‖ = 1 and (T − λI)ξn → 0 in norm. Since T
is compact, there is a subsequence {ξnj} such that, {T (ξnj )} → η ∈ H. Then, (T − λI)ξnj → 0. We ask the
reader to fill up the rest of the details in this proof.
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Lecture 35. November 18th. Polar Decomposition and Traces

Let T ∈ B(H). Set |T | = (T ∗T )1/2. For any ξ ∈ H, ‖|T |ξ‖2 =< |T |ξ, |T |ξ >=< T ∗Tξ, ξ >= ‖Tξ‖2. Thus
‖|T |ξ‖ = ‖Tξ‖.

Let ηT = ker(T ) = ker(|T |). Define V on ηT to be the 0 operator. Now look at (ker(T ))⊥ = range(T ). For
ξ ∈ H, try setting V (|T |ξ) = Tξ. Is this well defined? If |T |ξ = |T |η, then is Tξ = Tη? This is obvious as
the kernels of the two operators are the same.

Also, ‖V (|T |ξ)‖ = ‖Tξ‖ = ‖|T |ξ‖, so V is an isometry on the range of |T |. So V extends by continu-
ity to (ker|T |)⊥ = ker(T )⊥. So, H = (ker(T ))⊕ ker(T )⊥.

Definition 107 By a partial isometry on a Hilbert Space H, we mean an operator V which is an isometry
on (kerV )⊥. So, V (as above) is a partial isometry.

Thus if T ∈ B0(H), then T ∈ B0(H) and the converse is also true. We now take a small detour.

Let {ξα} be an orthonormal basis for H. For any T ∈ B(H), T ≥ 0 set tr(T ) =
∑

< Tξα, ξα >. Note, if
S, T ∈ B(H), S ≥ 0, T ≥ 0, then tr(S + T ) = tr(S) + tr(T ). If c ∈ R+, T ≥ 0 then tr(cT ) = ctr(T ).

Definition 108 For any C∗ Algebra A ⊆ B(H), by a weight on A we mean a function w : A+ → [0,∞],
such that if a, b ∈ A+, then w(a+ b) = w(a) + w(b) and if c ∈ R+, w(ca) = cw(a).

Proposition 109 For any T ∈ B(H), tr(T ∗T ) = tr(TT ∗).

Proof: | < Tξα, ξβ > |2 = | < ξα, T
∗ξβ > |2 = | < T ∗ξβ , ξα > |2. Now consider the sum

∑
α(
∑
β | <

Tξα, ξβ > |2). From Parseval’s law we have this is equal to
∑
α ‖Tξα‖

2
= tr(T ∗T ). On the other hand, from

Fubini, we have this is equal to
∑
β ‖T ∗ξβ‖

2
= tr(TT ∗).

Corollary 110 Let U be a unitary operator, then the tr(UTU∗) = tr(UT 1/2T 1/2U∗) = tr((UT 1/2)∗UT 1/2) =
Tr(T )

Let {ηα} be any other orthonormal basis for H. Let U be the unitary operator carrying {ξα} to {ηα}.∑
< Tηα, ηα >=

∑
< TUξα, Uξα >= tr(U∗TU) = tr(T ). Trace is independent of choice of basis.

If w is a weight on a C∗ algebra A ⊆ B(H), let L2(A,w) = {a ∈ A : w(a∗a) <∞}.

Proposition 111 If T ∈ L2(B(H), tr)), then T ∈ B0(H).

Proposition 112 If T ≥ 0, and tr(T ) <∞ then T ∈ B0(H).

Proposition 113 For T ≥ 0, tr(T ) ≥ ‖T‖. For any ε > 0 can find ξ, ‖ξ‖ = 1, ‖Tξ‖ ≤ ‖T‖ − ε. (use o.n.
basis).
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Lecture 36. November 21st. Trace Class Operators

Proposition 114 Let T ∈ B(H), T ≥ 0 and tr(T ) <∞ then T ∈ B0(H).

Proof: Choose orthonormal basis {ξα} so that
∑

< Tξα, ξα ><∞. Let ε > 0 be given. Thus we can find a
finite set A of α’s such that

∑
α/∈A < Rξα, ξα >≤ ε. Let P be the projection on span {ξα}α∈A - finite rank

projection. We have∥∥T 1/2 − T 1/2P
∥∥2

=
∥∥T 1/2(I − P )

∥∥2
= ‖(I − P )T (I − P )‖ ≤ tr((I − P )T (I − P )) < ε. Since ε is arbi-

trary, T 1/2 is approximated by a finite rank operator, which means T is compact.

Let A be a C∗ Algebra which is a subset of B(H). Let w be a weight on A. Define nw = {a ∈ A :
w(a∗a) <∞}. We have the parallelogram law for operators: (a+ b)∗(a+ b) + (a− b)∗(a− b) = 2(a∗a+ b∗b).
So if a, b ∈ nw, then w((a+ b)∗(a+ b)) <∞. Hence a+ b ∈ nw.

Proposition 115 a→ w(a∗a) is a quadratic form, for a pre inner product on nw.

Proof: b∗a = 1/4
∑3
k=0 i

k(a + ikb)∗(a + ikb). So extend w to nw by setting w(b∗a) = 1/4
∑
w(...). For tr

on B(H), ntr = {T ∈ B(H) : tr(T ∗T ) <∞} is called the set of Hilbert Schmidt Operators, and is a 2-sided
ideal inside B(H).

Proposition 116 nw is a left ideal in A and for action of A on the left on nw, a → La, ‖La‖ ≤ ‖a‖, i.e,

for b ∈ nw, a ∈ A, < Lab, Lab >w≤ ‖a‖2 < b, b >w.

Proof: < Lab, Lab >w=< ab, ab >2= w(b∗a∗ab) ≤ w(b∗ ‖a∗a‖ b) = ‖a‖2 < b, b >w.

Let mw be the linear span of {a ∈ A, a ≥ 0andw(a) < ∞} so mw is a *-subspace of A. If a ∈ A, a ≥ 0,
w(a) <∞, then a1/2 ∈ nw so a ∈ nw. Thus mw ⊆ nw. If a, b ∈ mw, b∗a = 1/4

∑
ik(a+ ikb)∗(a+ ikb).

Proposition 117 mw is a *-subalgebra of A. mw is not an ideal.


