Outer Measure of a Closed Box

Brent Nelson

Proposition. Let

$$
A=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subset \mathbb{R}^{n}
$$

Then

$$
m^{*}(A)=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)
$$

Proof. Let $\epsilon>0$, and observe that if

$$
B:=\left(a_{1}-\epsilon, b_{1}+\epsilon\right) \times \cdots \times\left(a_{n}-\epsilon, b_{n}+\epsilon\right)
$$

then $\{B\}$ is a countable covering of A by open boxes. Thus

$$
m^{*}(A) \leq|B|=\prod_{i=1}^{n}\left(b_{i}-a_{i}+2 \epsilon\right)
$$

Letting $\epsilon \rightarrow 0$ yields $m^{*}(A)=\prod\left(b_{i}-a_{i}\right)$.
Now, let $\left\{B_{k}\right\}_{k \in \mathbb{N}}$ be a countable covering of A by open boxes. Since A is a closed and bounded subset of \mathbb{R}^{n}, it is compact by the Heine-Borel theorem. Hence the open covering $\left\{B_{k}\right\}_{k \in \mathbb{N}}$ can be reduced to a finite subcover $\left\{B_{k_{1}}, \ldots, B_{k_{d}}\right\}$. Observe that

$$
\chi_{A} \leq \chi_{B_{k_{1}}}+\cdots+\chi_{B_{k_{d}}}
$$

Thus we have

$$
\begin{array}{rlr}
\prod_{i=1}^{n}\left(b_{i}-a_{i}\right) & =\int \chi_{A} & \quad \text { (Fubini's theorem) } \\
& \leq \sum_{j=1}^{d} \int \chi_{B_{k_{j}}} & \text { (monotonicity of the Riemann integral) } \\
& =\sum_{j=1}^{d}\left|B_{k_{j}}\right| & \text { (Fubini's theorem again) } \\
& \leq \sum_{k=1}^{\infty}\left|B_{k}\right|
\end{array}
$$

Since $\left\{B_{k}\right\}_{k \in \mathbb{N}}$ was an arbitrary countable covering of A by open boxes, we have $\prod\left(b_{i}-a_{i}\right) \leq m^{*}(A)$ and the desired equality follows.

