5.1

- $\mathcal{M}(m, n)$ - the $m \times n$ matrices with real entries, also denoted \mathcal{M} when m and n are clear from context. For $A \in \mathcal{M}(m, n)$ we write $[A]_{i j}$ for the (i, j) th entry of A. If the entries are given as $a_{i j}$, we also write $A=\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$.
- $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ - the linear transformations from \mathbb{R}^{n} to \mathbb{R}^{m}, also denoted \mathcal{L} when \mathbb{R}^{n} and \mathbb{R}^{m} are clear from context.
- T_{A} for $A \in \mathcal{M}(m, n)$ - the linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} induced by the standard action of an $m \times n$ matrix on an n-dimensional vector.
- \mathcal{T} - the isomorphism from $\mathcal{M}(m, n)$ to $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ defined by $A \mapsto T_{A}$.

5.2

- U - usually an open subset of \mathbb{R}^{n}.
- p - usually a point in U.
- x_{j} - the j th coordinate of a vector x
- $(D f)_{p}$ - the derivative of a function $f: U \rightarrow \mathbb{R}^{m}$ at a point $p \in U$
- $R(v)$ - the Taylor remainder (implicitly depending on a function $f: U \rightarrow \mathbb{R}^{m}$ and a point $p \in U$), defined by the formula $f(p+v)=f(p)+(D f)_{p}(v)+R(v)$
- f_{i} - the i th coordinate function of a vector valued function f
- $\frac{\partial f_{i}(p)}{\partial x_{j}}$ - the j th partial derivative of the i th coordinate function of a vector valued function f
- $D f$ - the (total) derivative or Fréchet derivative of f, usually thought of as a map $D f: U \rightarrow \mathcal{L}\left(R^{n}, R^{m}\right)$.
5.3
- $D^{r} f$ - the r th derivative of f, thought of as a map $D^{r} f: U \rightarrow \mathcal{L}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.
- $\mathcal{L}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ - r-linear maps from $\underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{r \text { times }}$ to \mathbb{R}^{m}, isomorphic to $\mathcal{L}\left(\mathbb{R}^{n^{r}}, \mathbb{R}^{m}\right)$.
- $f_{k} \rightrightarrows f$ - for a function f and a sequence of functions $\left(f_{k}\right)_{k \in \mathbb{N}}$, with $f_{k}, f: U \rightarrow \mathbb{R}^{n}$, this notation means the sequence converges uniformly to f on U.
- $\|f\|_{r}$ - the C^{r} norm for an function $f: U \rightarrow \mathbb{R}^{m}$ of class C^{r}, defined by

$$
\|f\|_{r}=\max \left\{\sup _{p \in U}|f(p)|, \ldots, \sup _{p \in U}\left\|\left(D^{r} f\right)_{p}\right\|\right\} .
$$

- $C^{r}\left(U, \mathbb{R}^{m}\right)$ - the set of C^{r} functions $f: U \rightarrow \mathbb{R}^{m}$ with $\|f\|_{r}<\infty$.

5.7

- R - a rectangle in \mathbb{R}^{2}, usually given by $R=[a, b] \times[c, d]$. Has area denoted $|R|=(b-a)(d-c)$.
- G - a grid on a rectangle $R=[a, b] \times[c, d]$ given by $G=P \times Q$ where

$$
P=\left\{a=x_{0}<x_{1}<\cdots<x_{m}=b\right\}
$$

is a partition of $[a . b]$ and

$$
Q=\left\{c=y_{0}<y_{1}<\cdots<y_{n}=d\right\}
$$

is a partition of $[c, d]$

- $R_{i j}$ - a subrectangle of R determined by a grid G. If G is as above, then $R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$. Note that $\left|R_{i j}\right|=\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)=\Delta x_{i} \Delta y_{j}$.
- S - sample points in R determeind by a grid G. If G is as above, then $S=\left\{s_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ where $s_{i j}$ is any point in $R_{i j}$.
- $R(f, G, S)$ - the Riemann sum of f corresponding to the grid G and samples points S. It is the number

$$
R(f, G, S)=\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(s_{i j}\right)\left|R_{i j}\right|
$$

- $L(f, G)$ - the lower (Darboux) sum for a bounded function f with respect to a grid G. It is the number

$$
L(f, G)=\sum_{i=1}^{m} \sum_{j=1}^{n} m_{i j}\left|R_{i j}\right|
$$

where $m_{i j}=\inf \left\{f(x, y):(x, y) \in R_{i j}\right\}$.

- $U(f, G)$ - the upper (Darboux) sum for a bounded function f with respect to a grid G. It is the number

$$
U(f, G)=\sum_{i=1}^{m} \sum_{j=1}^{n} M_{i j}\left|R_{i j}\right|
$$

where $M_{i j}=\sup \left\{f(x, y):(x, y) \in R_{i, j}\right\}$.

- $\int_{R} f$ - the Riemann integral of the function f over the rectangle R
- $\underline{\int}_{R} f, \bar{\int}_{R} f$ - the lower and upper integrals of f, respectively, defined as the

$$
\underline{\int}_{R} f=\sup _{G} L(f, G) \quad \bar{\int}_{R} f=\inf _{G} U(f, G) .
$$

For bounded functions f, these always exist and $\int_{R} f \leq \bar{\int}_{R} f$ with equality if and only if f is Riemann integrable.

- χ_{S} for a subset $S \subset \mathbb{R}^{2}$ - the characteristic function of S, defined by $\chi_{S}(x, y)=1$ if $(x, y) \in S$ and $\chi_{S}(x, y)=0$ otherwise.
- $|S|$ for a bounded subset $S \subset \mathbb{R}^{2}$ - the area of the set S, which exists if S is Riemann measurable. It is defined as $|S|=\int_{R} \chi_{S}$ for any rectangle $R \supset S$.
- $\int_{S} f$ - for a Riemann measurable set $S \subset \mathbb{R}^{2}$ and f Riemann integrable on some rectangle $R \supset S$, this integral is defined as $\int_{R} f \chi_{S}$
- $\operatorname{Jac}_{z}(\varphi)$ - the Jacobian of C^{1} function $\varphi: U \rightarrow \mathbb{R}^{n}$ (defined on an open subset $U \subset \mathbb{R}^{n}$) at a point z, given by the number $\operatorname{det}\left((D \varphi)_{z}\right)$.

5.8

- $C_{k}\left(\mathbb{R}^{n}\right)$ - the set of k-cells in \mathbb{R}^{n}, which are smooth functions $\varphi:[0,1]^{k} \rightarrow \mathbb{R}^{n}$. The unit k-cube $[0,1]^{k}$ may also be denoted I^{k}.
- $\frac{\partial \varphi_{I}}{\partial u}$ - for $\varphi \in C_{k}\left(\mathbb{R}^{n}\right)$ and $I=\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, n\}^{k}$ this is the partial Jacobian of φ defined at $u \in[0,1]^{k}$ by

$$
\frac{\partial \varphi_{I}}{\partial u}(u)=\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial \varphi_{i_{1}}}{\partial u_{1}}(u) & \cdots & \frac{\partial \varphi_{i_{1}}}{\partial u_{k}}(u) \\
\vdots & \ddots & \vdots \\
\frac{\partial \varphi_{i_{k}}}{\partial u_{1}}(u) & \cdots & \frac{\partial \varphi_{i_{k}}}{\partial u_{k}}(u)
\end{array}\right] .
$$

Also denoted $\frac{\partial \varphi_{I}}{\partial u}=\frac{\partial\left(\varphi_{i_{1}}, \ldots, \varphi_{i_{k}}\right)}{\partial\left(u_{1}, \ldots, u_{k}\right)}$.

- $d y_{I}$ - a basic differential k-form on \mathbb{R}^{n}. For $I=\{1, \ldots, n\}^{k}$ this is the functional on $C_{k}\left(\mathbb{R}^{n}\right)$ defined by

$$
d y_{I}(\varphi)=\int_{[0,1]^{k}} \frac{\partial \varphi_{I}}{\partial u},
$$

and this number is called the I-shadow area of φ.

- $f d y_{I}$ - a simple differential k-form on \mathbb{R}^{n}. For $I=\{1, \ldots, n\}^{k}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ smooth this is the functional on $C_{k}\left(\mathbb{R}^{n}\right)$ defined by

$$
f d y_{I}(\varphi)=\int_{[0,1]^{k}} f \circ \varphi \frac{\partial \varphi_{I}}{\partial u} .
$$

- $\Omega^{k}\left(\mathbb{R}^{n}\right)$ - the set of (general) differential k-forms on \mathbb{R}^{n}. These are linear combinations of simple k-forms: $\omega=\sum f_{I} d y_{I}$.
- $C^{k}\left(\mathbb{R}^{n}\right)$ - the set of all functionals on $C_{k}\left(\mathbb{R}^{n}\right)$; thus $C^{k}\left(\mathbb{R}^{n}\right) \supsetneq \Omega^{k}\left(\mathbb{R}^{n}\right)$.
- $\int_{\varphi} \omega$ - for $\varphi \in C_{k}\left(\mathbb{R}^{n}\right)$ and $\omega \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ this is equivalent notation for $\omega(\varphi)$.
- $\alpha \wedge \beta$ - the wedge product of two forms α and β. For $\alpha=\sum_{I} a_{I} d y_{I} \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ and $\beta=\sum_{J} b_{J} d y_{J} \in$ $\Omega^{\ell}\left(\mathbb{R}^{n}\right)$, this is the $k+\ell$-form on \mathbb{R}^{n} given by $\sum_{I, J} a_{I} b_{J} d y_{I J}$.
- $d \omega$ - the exterior derivative of form ω. For $\omega=\sum f_{I} d y_{I}$, we have $d \omega=\sum d\left(f_{I}\right) \wedge d y_{I}$, where $d\left(f_{I}\right)$ is the 1 -form given by

$$
d\left(f_{I}\right)=\sum_{j=1}^{n} \frac{\partial f_{I}}{\partial y_{j}} d y_{j} .
$$

- $T_{*} \varphi$ - the pushforward of $\varphi \in C_{k}\left(\mathbb{R}^{n}\right)$ by a smooth map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. It is the k-cell in \mathbb{R}^{m} given by $T_{*} \varphi:=T \circ \varphi \in C_{k}\left(\mathbb{R}^{m}\right)$.
- $T^{*} \omega$ - the pullback of $\omega \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ by a smooth map $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. It is the k-form on \mathbb{R}^{m} given by $\left[T^{*} \omega\right](\varphi)=\omega\left(T_{*} \varphi\right)$. More explicitly, if $\omega=\sum f_{I} d y_{I}$ then

$$
T^{*} \omega=\sum_{I} f_{I} \circ T d T_{I},
$$

where if $I=\left(i_{1}, \ldots, i_{k}\right)$ then $d T_{I}=\left(d T_{i_{1}}\right) \wedge \cdots \wedge\left(d T_{i_{k}}\right)$.

5.9

- $\partial \varphi$ - the boundary of $\varphi \in C_{k}\left(\mathbb{R}^{n}\right)$. It is a $(k-1)$-chain in \mathbb{R}^{n} : a formal linear combination of $(k-1)$-cells. It is given by

$$
\partial \varphi=\sum_{j=1}^{k}(-1)^{j+1}\left(\varphi \circ \iota^{j, 1}-\varphi \circ \iota^{j, 0}\right),
$$

where $\iota^{j, 1}, \iota^{j, 0}:[0,1]^{k-1} \rightarrow[0,1]^{k}$ are the maps defined by

$$
\begin{aligned}
\iota^{j, 1}\left(u_{1}, \ldots, u_{k-1}\right) & :=\left(u_{1}, \ldots, u_{j-1}, 1, u_{j}, \ldots, u_{k-1}\right) \\
\iota^{j, 0}\left(u_{1}, \ldots, u_{k-1}\right) & :=\left(u_{1}, \ldots, u_{j-1}, 0, u_{j}, \ldots, u_{k-1}\right) .
\end{aligned}
$$

- $\delta^{j} \varphi$ - the j th dipole of $\varphi \in C_{k}\left(\mathbb{R}^{n}\right)$ for $j=1, \ldots, k$. It is the $(k-1)$-chain given by

$$
\delta^{j} \varphi=\varphi \circ \iota^{j, 1}-\varphi \circ \iota^{j, 0} .
$$

- $\Omega^{k}(U)$ - the set of differential k-forms on U, for $U \subset \mathbb{R}^{n}$ an open subset. These are linear combinations of simple k-forms on $U: f d y_{I}$ for $f: U \rightarrow \mathbb{R}$ a smooth function and I a k-tuple in $\{1, \ldots, n\}$.
- $C_{k}(U)$ - the set of k-cells in U, which are smooth maps $\varphi:[0,1]^{k} \rightarrow U$.
- $B^{k}(U)$ - the set of exact k-forms on U; that is, the $\omega \in \Omega^{k}(U)$ on U such that $\omega=d \alpha$ for some $\alpha \in \Omega^{k-1}(U)$.
- $Z^{k}(U)$ - the set of closed k-forms on U; that is, the k-forms $\omega \in \Omega^{k}(U)$ such that $d \omega=0$.
- $H^{k}(U)$ - the k th de Rham cohomology group of U, which is the vector space quotient of $Z^{k}(U) / B^{k}(U)$.

6.1

- $|B|$ - the volume of a box $B \subset \mathbb{R}^{n}$.
- $m^{*}(A)$ - The outer measure of a set $A \subset \mathbb{R}^{d}$, which is defined as the quantity:

$$
m^{*}(A)=\inf \left\{\sum_{k=1}^{\infty}\left|B_{k}\right|:\left\{B_{k}\right\}_{k \in \mathbb{N}} \text { is a countable covering of } A \text { by open boxes }\right\}
$$

6.2

- $\mathcal{M}\left(\mathbb{R}^{d}\right)$ - the collection of Lebesgue measurable subsets of \mathbb{R}^{d}, also denoted \mathcal{M}, which are those subsets $E \subset \mathbb{R}^{d}$ satisfying the Carathéodory condition:

$$
m^{*}(X)=m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right) \quad \forall X \subset \mathbb{R}^{d}
$$

- $m(E)$ - the Lebesgue measure of a Lebesgue measurable set $E \in \mathcal{M}$, which is just its outer measure.
- G_{δ} - a class of set: we say G is a G_{δ} set if it is the countable (or finite) intersection of open sets.
- F_{σ} - a class of set: we say F is an F_{σ} set if it is the countable (or finite) union of closed sets.

Measurable Functions

- $\overline{\mathbb{R}}$ - the set $\mathbb{R} \cup\{-\infty\} \cup\{+\infty\}$, called the extended real line. By convention, we take $0 \cdot \infty=0$.
- a.e. - "almost everywhere." We write this when a condition/property/equality holds except possibly on a measure set; e.g. $f=g$ a.e. means that the functions f and g agree except possibly on a measure zero set.

The Lebesgue Integral

- $\mathcal{L}^{+}\left(\mathbb{R}^{d}\right)$ - the space of Lebesgue measurable functions $f: \mathbb{R}^{d} \rightarrow[0, \infty]$. Also denoted \mathcal{L}^{+}.
- $\int f d m$ - the Lebesgue integral of a function f.

Integrating $\overline{\mathbb{R}}$-valued Functions

- $f_{ \pm}$- the positive and negative parts of a Lebesgue measurable function $f: \mathbb{R}^{d} \rightarrow \bar{R}$. Defined as

$$
f_{+}:=f \chi_{f^{-1}([0, \infty])} \quad f_{-}:=-f \chi_{\left.f^{-1}([-\infty, 0)]\right)}
$$

- $L^{1}\left(\mathbb{R}^{d}, m\right)$ - the space of Lebesgue integrable functions $f: \mathbb{R}^{d} \rightarrow \bar{R}$. Also denoted $L^{1}(m)$. Later redefined to be the set of equivalence classes of such functions under the equivalence relation

$$
f \sim g \quad \Longleftrightarrow \quad f=g \text { a.e. }
$$

- $\|f\|_{1}$ - the L^{1}-norm for a function $f \in L^{1}(m)$. Defined as

$$
\|f\|_{1}=\int|f| d m
$$

