5.1

- $\mathcal{M}(m,n)$ the $m \times n$ matrices with real entries, also denoted \mathcal{M} when m and n are clear from context. For $A \in \mathcal{M}(m,n)$ we write $[A]_{ij}$ for the (i,j)th entry of A. If the entries are given as a_{ij} , we also write $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$.
- $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ the linear transformations from \mathbb{R}^n to \mathbb{R}^m , also denoted \mathcal{L} when \mathbb{R}^n and \mathbb{R}^m are clear from context.
- T_A for $A \in \mathcal{M}(m, n)$ the linear transformation from \mathbb{R}^n to \mathbb{R}^n induced by the standard action of an $m \times n$ matrix on an *n*-dimensional vector.
- \mathcal{T} the isomorphism from $\mathcal{M}(m,n)$ to $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ defined by $A\mapsto T_A$.

5.2

- U usually an open subset of \mathbb{R}^n .
- p usually a point in U.
- x_j the *j*th coordinate of a vector x
- $(Df)_p$ the derivative of a function $f: U \to \mathbb{R}^m$ at a point $p \in U$
- R(v) the Taylor remainder (implicitly depending on a function $f: U \to \mathbb{R}^m$ and a point $p \in U$), defined by the formula $f(p+v) = f(p) + (Df)_p(v) + R(v)$
- f_i the *i*th coordinate function of a vector valued function f
- $\frac{\partial f_i(p)}{\partial x_i}$ the *j*th partial derivative of the *i*th coordinate function of a vector valued function f
- Df the (total) derivative or Fréchet derivative of f, usually thought of as a map $Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

5.3

- $D^r f$ the *r*th derivative of f, thought of as a map $D^r f \colon U \to \mathcal{L}^r(\mathbb{R}^n, \mathbb{R}^m)$.
- $\mathcal{L}^{r}(\mathbb{R}^{n},\mathbb{R}^{m})$ *r*-linear maps from $\underbrace{\mathbb{R}^{n}\times\cdots\times\mathbb{R}^{n}}_{r \text{ times}}$ to \mathbb{R}^{m} , isomorphic to $\mathcal{L}(\mathbb{R}^{n^{r}},\mathbb{R}^{m})$.
- $f_k \rightrightarrows f$ for a function f and a sequence of functions $(f_k)_{k \in \mathbb{N}}$, with $f_k, f: U \to \mathbb{R}^n$, this notation means the sequence converges uniformly to f on U.
- $||f||_r$ the C^r norm for an function $f: U \to \mathbb{R}^m$ of class C^r , defined by

$$||f||_r = \max\left\{\sup_{p \in U} |f(p)|, \dots, \sup_{p \in U} ||(D^r f)_p||\right\}.$$

• $C^r(U, \mathbb{R}^m)$ - the set of C^r functions $f: U \to \mathbb{R}^m$ with $||f||_r < \infty$.

5.7

• R - a rectangle in \mathbb{R}^2 , usually given by $R = [a, b] \times [c, d]$. Has area denoted |R| = (b - a)(d - c).

• G - a grid on a rectangle $R = [a,b] \times [c,d]$ given by $G = P \times Q$ where

$$P = \{a = x_0 < x_1 < \dots < x_m = b\}$$

is a partition of [a.b] and

$$Q = \{ c = y_0 < y_1 < \dots < y_n = d \}$$

is a partition of [c, d]

- R_{ij} a subrectangle of R determined by a grid G. If G is as above, then $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$. Note that $|R_{ij}| = (x_i - x_{i-1})(y_j - y_{j-1}) = \Delta x_i \Delta y_j$.
- S sample points in R determined by a grid G. If G is as above, then $S = \{s_{ij} : 1 \le i \le m, 1 \le j \le n\}$ where s_{ij} is **any** point in R_{ij} .
- R(f, G, S) the Riemann sum of f corresponding to the grid G and samples points S. It is the number

$$R(f, G, S) = \sum_{i=1}^{m} \sum_{j=1}^{n} f(s_{ij}) |R_{ij}|$$

• L(f,G) - the lower (Darboux) sum for a bounded function f with respect to a grid G. It is the number

$$L(f,G) = \sum_{i=1}^{m} \sum_{j=1}^{n} m_{ij} |R_{ij}|,$$

where $m_{ij} = \inf\{f(x, y) \colon (x, y) \in R_{ij}\}.$

• U(f,G) - the upper (Darboux) sum for a bounded function f with respect to a grid G. It is the number

$$U(f,G) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} |R_{ij}|,$$

where $M_{ij} = \sup\{f(x, y) : (x, y) \in R_{i,j}\}.$

- $\int_R f$ the Riemann integral of the function f over the rectangle R
- $\underline{\int}_R f, \overline{\int}_R f$ the lower and upper integrals of f, respectively, defined as the

$$\underline{\int}_R f = \sup_G L(f,G) \qquad \overline{\int}_R f = \inf_G U(f,G).$$

For bounded functions f, these always exist and $\underline{\int}_R f \leq \overline{\int}_R f$ with equality if and only if f is Riemann integrable.

- χ_S for a subset $S \subset \mathbb{R}^2$ the characteristic function of S, defined by $\chi_S(x,y) = 1$ if $(x,y) \in S$ and $\chi_S(x,y) = 0$ otherwise.
- |S| for a bounded subset $S \subset \mathbb{R}^2$ the area of the set S, which exists if S is Riemann measurable. It is defined as $|S| = \int_R \chi_S$ for any rectangle $R \supset S$.
- $\int_S f$ for a Riemann measurable set $S \subset \mathbb{R}^2$ and f Riemann integrable on some rectangle $R \supset S$, this integral is defined as $\int_R f\chi_S$
- $\operatorname{Jac}_z(\varphi)$ the Jacobian of C^1 function $\varphi \colon U \to \mathbb{R}^n$ (defined on an open subset $U \subset \mathbb{R}^n$) at a point z, given by the number $\det((D\varphi)_z)$.

$\mathbf{5.8}$

- $C_k(\mathbb{R}^n)$ the set of k-cells in \mathbb{R}^n , which are smooth functions $\varphi \colon [0,1]^k \to \mathbb{R}^n$. The unit k-cube $[0,1]^k$ may also be denoted I^k .
- $\frac{\partial \varphi_I}{\partial u}$ for $\varphi \in C_k(\mathbb{R}^n)$ and $I = (i_1, \ldots, i_k) \in \{1, \ldots, n\}^k$ this is the partial Jacobian of φ defined at $u \in [0, 1]^k$ by

$$\frac{\partial \varphi_I}{\partial u}(u) = \det \begin{bmatrix} \frac{\partial \varphi_{i_1}}{\partial u_1}(u) & \cdots & \frac{\partial \varphi_{i_1}}{\partial u_k}(u) \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_{i_k}}{\partial u_1}(u) & \cdots & \frac{\partial \varphi_{i_k}}{\partial u_k}(u) \end{bmatrix}.$$

Also denoted $\frac{\partial \varphi_I}{\partial u} = \frac{\partial (\varphi_{i_1}, \dots, \varphi_{i_k})}{\partial (u_1, \dots, u_k)}.$

• dy_I - a basic differential k-form on \mathbb{R}^n . For $I = \{1, \ldots, n\}^k$ this is the functional on $C_k(\mathbb{R}^n)$ defined by

$$dy_I(\varphi) = \int_{[0,1]^k} \frac{\partial \varphi_I}{\partial u}$$

and this number is called the I-shadow area of $\varphi.$

• fdy_I - a simple differential k-form on \mathbb{R}^n . For $I = \{1, \ldots, n\}^k$ and $f \colon \mathbb{R}^n \to \mathbb{R}$ smooth this is the functional on $C_k(\mathbb{R}^n)$ defined by

$$f dy_I(\varphi) = \int_{[0,1]^k} f \circ \varphi \frac{\partial \varphi_I}{\partial u}$$

- $\Omega^k(\mathbb{R}^n)$ the set of (general) differential k-forms on \mathbb{R}^n . These are linear combinations of simple k-forms: $\omega = \sum f_I dy_I$.
- $C^k(\mathbb{R}^n)$ the set of all functionals on $C_k(\mathbb{R}^n)$; thus $C^k(\mathbb{R}^n) \supseteq \Omega^k(\mathbb{R}^n)$.
- $\int_{\omega} \omega$ for $\varphi \in C_k(\mathbb{R}^n)$ and $\omega \in \Omega^k(\mathbb{R}^n)$ this is equivalent notation for $\omega(\varphi)$.
- $\alpha \wedge \beta$ the wedge product of two forms α and β . For $\alpha = \sum_{I} a_{I} dy_{I} \in \Omega^{k}(\mathbb{R}^{n})$ and $\beta = \sum_{J} b_{J} dy_{J} \in \Omega^{\ell}(\mathbb{R}^{n})$, this is the $k + \ell$ -form on \mathbb{R}^{n} given by $\sum_{I,J} a_{I} b_{J} dy_{IJ}$.
- $d\omega$ the exterior derivative of form ω . For $\omega = \sum f_I dy_I$, we have $d\omega = \sum d(f_I) \wedge dy_I$, where $d(f_I)$ is the 1-form given by

$$d(f_I) = \sum_{j=1}^n \frac{\partial f_I}{\partial y_j} dy_j$$

- $T_*\varphi$ the pushforward of $\varphi \in C_k(\mathbb{R}^n)$ by a smooth map $T \colon \mathbb{R}^n \to \mathbb{R}^m$. It is the k-cell in \mathbb{R}^m given by $T_*\varphi := T \circ \varphi \in C_k(\mathbb{R}^m)$.
- $T^*\omega$ the pullback of $\omega \in \Omega^k(\mathbb{R}^n)$ by a smooth map $T \colon \mathbb{R}^m \to \mathbb{R}^n$. It is the k-form on \mathbb{R}^m given by $[T^*\omega](\varphi) = \omega(T_*\varphi)$. More explicitly, if $\omega = \sum f_I dy_I$ then

$$T^*\omega = \sum_I f_I \circ T dT_I$$

where if $I = (i_1, \ldots, i_k)$ then $dT_I = (dT_{i_1}) \wedge \cdots \wedge (dT_{i_k})$.

5.9

• $\partial \varphi$ - the boundary of $\varphi \in C_k(\mathbb{R}^n)$. It is a (k-1)-chain in \mathbb{R}^n : a formal linear combination of (k-1)-cells. It is given by

$$\partial \varphi = \sum_{j=1}^{k} (-1)^{j+1} \left(\varphi \circ \iota^{j,1} - \varphi \circ \iota^{j,0} \right),$$

where $\iota^{j,1}, \iota^{j,0} \colon [0,1]^{k-1} \to [0,1]^k$ are the maps defined by

$$\iota^{j,1}(u_1,\ldots,u_{k-1}) := (u_1,\ldots,u_{j-1},1,u_j,\ldots,u_{k-1})$$
$$\iota^{j,0}(u_1,\ldots,u_{k-1}) := (u_1,\ldots,u_{j-1},0,u_j,\ldots,u_{k-1}).$$

• $\delta^j \varphi$ - the *j*th dipole of $\varphi \in C_k(\mathbb{R}^n)$ for $j = 1, \ldots, k$. It is the (k-1)-chain given by

$$\delta^j \varphi = \varphi \circ \iota^{j,1} - \varphi \circ \iota^{j,0}.$$

- $\Omega^k(U)$ the set of differential k-forms on U, for $U \subset \mathbb{R}^n$ an open subset. These are linear combinations of simple k-forms on U: fdy_I for $f: U \to \mathbb{R}$ a smooth function and I a k-tuple in $\{1, \ldots, n\}$.
- $C_k(U)$ the set of k-cells in U, which are smooth maps $\varphi \colon [0,1]^k \to U$.
- $B^k(U)$ the set of exact k-forms on U; that is, the $\omega \in \Omega^k(U)$ on U such that $\omega = d\alpha$ for some $\alpha \in \Omega^{k-1}(U)$.
- $Z^k(U)$ the set of closed k-forms on U; that is, the k-forms $\omega \in \Omega^k(U)$ such that $d\omega = 0$.
- $H^k(U)$ the kth de Rham cohomology group of U, which is the vector space quotient of $Z^k(U)/B^k(U)$.

6.1

- |B| the volume of a box $B \subset \mathbb{R}^n$.
- $m^*(A)$ The outer measure of a set $A \subset \mathbb{R}^d$, which is defined as the quantity:

$$m^*(A) = \inf\left\{\sum_{k=1}^{\infty} |B_k| \colon \{B_k\}_{k \in \mathbb{N}} \text{ is a countable covering of } A \text{ by open boxes}\right\}$$

6.2

• $\mathcal{M}(\mathbb{R}^d)$ - the collection of Lebesgue measurable subsets of \mathbb{R}^d , also denoted \mathcal{M} , which are those subsets $E \subset \mathbb{R}^d$ satisfying the *Carathéodory condition*:

$$m^*(X) = m^*(X \cap E) + m^*(X \cap E^c) \qquad \forall X \subset \mathbb{R}^d.$$

- m(E) the Lebesgue measure of a Lebesgue measurable set $E \in \mathcal{M}$, which is just its outer measure.
- G_{δ} a class of set: we say G is a G_{δ} set if it is the countable (or finite) intersection of open sets.
- F_{σ} a class of set: we say F is an F_{σ} set if it is the countable (or finite) union of closed sets.

Measurable Functions

• $\overline{\mathbb{R}}$ - the set $\mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$, called the extended real line. By convention, we take $0 \cdot \infty = 0$.

• a.e. - "almost everywhere." We write this when a condition/property/equality holds except possibly on a measure set; e.g. f = g a.e. means that the functions f and g agree except possibly on a measure zero set.

The Lebesgue Integral

- $\mathcal{L}^+(\mathbb{R}^d)$ the space of Lebesgue measurable functions $f: \mathbb{R}^d \to [0,\infty]$. Also denoted \mathcal{L}^+ .
- $\int f \, dm$ the Lebesgue integral of a function f.

Integrating $\overline{\mathbb{R}}$ -valued Functions

• f_{\pm} - the positive and negative parts of a Lebesgue measurable function $f: \mathbb{R}^d \to \overline{R}$. Defined as

$$f_{+} := f\chi_{f^{-1}([0,\infty])} \qquad \qquad f_{-} := -f\chi_{f^{-1}([-\infty,0])}$$

• $L^1(\mathbb{R}^d, m)$ - the space of Lebesgue integrable functions $f: \mathbb{R}^d \to \overline{R}$. Also denoted $L^1(m)$. Later redefined to be the set of equivalence classes of such functions under the equivalence relation

$$f \sim g \qquad \iff \qquad f = g \text{ a.e.}$$

• $||f||_1$ - the L^1 -norm for a function $f \in L^1(m)$. Defined as

$$\|f\|_1 = \int |f| \ dm$$