1. (a) (3 pts) The function f is a C^{r}-diffeomorphism if it is a bijection, of class C^{r}, and its inverse is of class C^{r}.
(b) ($\mathbf{7} \mathbf{~ p t s}$) We first note that f is indeed a bijection since its inverse is given by

$$
g\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right)
$$

The the coordinate functions of f and g are polynomials (degree one polynomials, but polynomials nonetheless), which are smooth. By a theorem from class, this implies f and g are smooth functions. In particular, they are of class C^{r} for every $r \in \mathbb{N}$. Hence f is a C^{r}-diffeomorphism.
2. (a) (3 pts) S is Riemann measurable if its characteristic function χ_{S} is Riemann integrable. Equivalently, if ∂S is a zero set.
(b) (7 pts) Let $T_{1}, T_{2} \subset R$ be the triangles

$$
\begin{aligned}
& T_{1}:=\{(x, y) \in R: x \leq y\} \\
& T_{2}:=\{(x, y) \in R: x>y\}
\end{aligned}
$$

Since their boundaries are composed of line segments, which are zero sets, these sets are Riemann measurable. Consequently $\chi_{T_{1}}$ and $\chi_{T_{2}}$ are Riemann integrable. Observe that $f=a \chi_{T_{1}}+b \chi_{T_{2}}$, thus f is Riemann integrable and

$$
\int_{R} f=a \int_{R} \chi_{T_{1}}+b \int_{R} \chi_{T_{2}}
$$

Now, to compute these integrals we invoke Fubini's theorem:

$$
\int_{R} \chi_{T_{1}}=\int_{0}^{1} \int_{0}^{1} \chi_{T_{1}}(x, y) d x d y=\int_{0}^{1} \int_{0}^{y} 1 d x d y=\int_{0}^{1} y d y=\left.\frac{y^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

For T_{2} we note $\chi_{T_{2}}=\chi_{R}-\chi_{T_{1}}$ and thus

$$
\int_{R} \chi_{T_{2}}=\int_{R} \chi_{R}-\int_{R} \chi_{T_{1}}=|R|-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}
$$

Thus $\int_{R}=\frac{a}{2}+\frac{b}{2}$.
3. (a) (3 pts) A smooth function $\varphi:[0,1]^{k} \rightarrow \mathbb{R}^{n}$ is a k-cell in \mathbb{R}^{n}.
(b) ($\mathbf{7} \mathbf{~ p t s})$ We first note

$$
\frac{\partial \varphi_{(1,2)}\left(u_{1}, u_{2}\right)}{\partial u}=\operatorname{det}\left[\begin{array}{cc}
\cos \left(2 \pi u_{2}\right) & -2 \pi u_{1} \sin \left(2 \pi u_{2}\right) \\
\sin \left(2 \pi u_{2}\right) & 2 \pi u_{1} \cos \left(2 \pi u_{2}\right)
\end{array}\right]=2 \pi u_{1} \cos ^{2}\left(2 \pi u_{2}\right)+2 \pi u_{1} \sin ^{2}\left(2 \pi u_{2}\right)=2 \pi u_{1}
$$

Thus by Fubini's theorem

$$
\begin{aligned}
\int_{\varphi} \omega & =\int_{[0,1]^{2}} f \circ \varphi(u) \frac{\partial \varphi_{(1,2)}(u)}{\partial u} d u \\
& =\int_{0}^{1} \int_{0}^{1} u_{1} \sin \left(2 \pi u_{2}\right) 2 \pi u_{1} d u_{1} d u_{2} \\
& =2 \pi \int_{0}^{1} u_{1}^{2} d u_{1} \int_{0}^{1} \sin \left(2 \pi u_{2}\right) d u_{2} \\
& =2 \pi\left[\frac{u_{1}^{3}}{3}\right]_{0}^{1}\left[\frac{-\cos \left(2 \pi u_{2}\right)}{2 \pi}\right]_{0}^{1}=0
\end{aligned}
$$

[Alternative Proof:] Using the change of variables $r=u_{1}$ and $\theta=2 \pi u_{2}$ we have

$$
\int_{\varphi} \omega=\int_{0}^{2 \pi} \int_{0}^{1} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

By a homework exercise, this equals $\int_{S} f$ where

$$
S=\left\{(x, y) \in \mathbb{R}^{n}: x^{2}+y^{2} \leq 1\right\}
$$

However, since $f(x,-y)=-y=-f(x, y)$, the symmetry of S across the x-axis implies $\int_{S} f=0$.
4. (a) (3 pts)

$$
\begin{aligned}
\text { wedge product } & \wedge: \Omega^{k}\left(\mathbb{R}^{n}\right) \times \Omega^{\ell}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+\ell}\left(\mathbb{R}^{n}\right) \\
\text { exterior derivative } & d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{n}\right) \\
\text { pullback } & T^{*} \Omega^{k}\left(\mathbb{R}^{m}\right) \rightarrow \Omega^{k}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

(b) ($\mathbf{7} \mathbf{~ p t s}$) Using the definition of the exterior derivative:

$$
d \omega=d\left(f_{1}\right) \wedge d y_{(1,2)}+d\left(f_{2}\right) \wedge d y_{(1,3)}+d\left(f_{3}\right) \wedge d y_{(2,3)}
$$

Now, by a theorem from lecture we know that for $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ smooth we have

$$
d(f)=\frac{\partial f}{\partial y_{1}} d y_{1}+\frac{\partial f}{\partial y_{2}} d y_{2}+\frac{\partial f}{\partial y_{3}} d y_{3} .
$$

So continuing our previous computation and using signed commutativity we have

$$
\begin{aligned}
d \omega & =\left(2 y_{1} d y_{1}+0 d y_{2}+y_{1}^{2} d y_{3}\right) \wedge d y_{(1,2)}+\left(0 d y_{1}+y_{3} d y_{2}+y_{2} d y_{3}\right) \wedge d y_{(1,3)}+\left(y_{3} d y_{1}+0 d y_{2}+y_{1} d y_{3}\right) \wedge d y_{(2,3)} \\
& =2 y_{1} d y_{(1,1,2)}+y_{1}^{2} d y_{(3,1,2)}+y_{3} d y_{(2,1,3)}+y_{2} d y_{(3,1,3)}+y_{3} d y_{(1,2,3)}+y_{1} d y_{(3,2,3)} \\
& =0+(-1)^{2} y_{1}^{2} d y_{(1,2,3)}+(-1)^{1} y_{3} d y_{(1,2,3)}+0+y_{3} d y_{(1,2,3)}+0 \\
& =y_{1}^{2} d y_{(1,2,3)} .
\end{aligned}
$$

