
Math 104 Solutions Midterm 1

1. (a) (3 pts) The operator norm is the quantity

‖T‖ :=

{
|Tv|
|v|

: v ∈ V \ {0}
}
.

(b) (7 pts) For f ∈ C([0, 1]) we have

|δ(x,y)(f)| = |(f(x), f(y))| ≤
√
f(x)2 + f(y)2 ≤

√
‖f‖2∞ + ‖f‖2∞ =

√
2‖f‖∞.

Hence ‖δ(x,y)‖ ≤
√

2. On the other hand, if f(x) = 1 is a constant function. Then ‖f‖∞ = 1 and hence

‖δ(x,y)‖ ≥ |δ(x,y)(f)| = |(1, 1)| =
√

2.

Thus ‖δ(x,y)‖ =
√

2. �

2. (a) (3 pts) R is sublinear if

lim
v→0

R(v)

|v|
= 0.

(b) (7 pts) We claim

(Df)p =

 p2 p1
1 2p2
1 1

 .
The corresponding Taylor remainder for v = (v1, v2) is then

R(v) = f(p+ v)− f(p)− (Df)p(v)

=

 (p1 + v1)(p2 + v2)
p1 + v1 + (p2 + v2)2

p1 + v1 + p2 + v2

−
 p1p2

p1 + p22
p1 + p2

−
 p2v1 + p1v2

v1 + 2p2v2
v1 + v2


=

 v1v2
v22
0

 .

Now, if v2 = 0, we have R(v)/|v| = 0. Otherwise, using |v| ≥ |v2| we have

|R(v)|
|v|

≤
√

(v1v2)2 + v42
|v2|

=
√
v21 + v22 = |v|,

which clearly tends to zero as |v| does. Hence R is sublinear and our claim holds. �

3. (a) (3 pts) T is k-linear if it is linear in each coordinate. That is, for 1 ≤ j ≤ k, v1, . . . , vk ∈ Rn, w ∈ Rn, and α ∈ R
we have

T (v1, . . . , vj−1, vj + αw, vj+1, . . . , vk) = T (v1, . . . , vk) + αT (v1, . . . , vj−1, w, vj+1, . . . , vk).

(b) (7 pts) Using basic differentiation rules, we can compute the second partial derivatives of the component functions
of f :

∂2f1(p)

∂x21
= 0

∂2f1(p)

∂x1∂x2
= 1

∂2f1(p)

∂x2∂x1
= 1

∂2f1(p)

∂x22
= 0

∂2f2(p)

∂x21
= 0

∂2f2(p)

∂x1∂x2
= 0

∂2f2(p)

∂x2∂x1
= 0

∂2f2(p)

∂x22
= 2

∂2f3(p)

∂x21
= 0

∂2f3(p)

∂x1∂x2
= 0

∂2f3(p)

∂x2∂x1
= 0

∂2f3(p)

∂x22
= 0

Since these are all clearly continuous, we have that (D2f)p exists. �
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Math 104 Solutions Midterm 1

[Alternate Proof:] We order pairs of basis vectors for R2 as follows:

{(e1, e1), (e1, e2), (e2, e1), (e2, e2)}.

We then claim that (D2f)p has the following matrix representation (the entries coming from the computations in
the previous proof):

(D2f)p =

 0 1 1 0
0 0 0 2
0 0 0 0


The corresponding Taylor remainder for (Df)p at (v, w) ∈ R2 × R2 is:

R(v, w) = (Df)p+v(w)− (Df)p(w)− (D2f)p(v, w)

=

 (p2 + v2)w1 + (p1 + v1)w2

w1 + 2(p2 + v2)w2

w1 + w2

−
 p2w1 + p1w2

w1 + 2p2w2

w1 + w2

−
 v1w2 + v2w1

2v2w2

0

 = 0.

Since this holds for all w ∈ R2, we have ‖R(v, ·)‖ = 0. Consequently lim
v→0

R(v, ·)
|v|

= 0. �

4. (a) (3 pts) The sequence is uniformly Cr convergent if there exists f : U → Rm of class Cr such that (Difk)k∈N
converges uniformly to Dif on U for each i = 0, 1, . . . , r.

(b) (7 pts) We claim the sequence is uniformly C1 convergent to f(x, y) = (x2, y). Indeed, we first note that for
(x, y) ∈ B

|fk(x, y)− f(x, y)| =
∣∣∣∣(xk , 1

k

)∣∣∣∣ =
1

k

√
x2 + 1 ≤ 1

k

√
2

Since this upper bound holds for all (x, y) ∈ B and tends to zero, we see that (fk)k∈N converges uniformly to f on
B. Now, from basic differentiation rules we know the partial derivatives of the component functions of fk and f ,
and since they are continuous it follows from a theorem proved in lecture these partial derivatives are the entires
of the total derivatives. Namely,

(Dfk)(x,y) =

[
2x+ 1

k 0
0 1

]
and (Df)(x,y) =

[
2x 0
0 1

]
.

Consequently,

(Dfk)(x,y) − (Df)(x,y) =

[
1
k 0
0 0

]
.

From a homework exercise, we know that the operator norm of this diagonal matrix is 1
k . Thus ‖(Df)(x,y) −

(Df)(x,y)‖ = 1
k for all (x, y) ∈ B. Since this tends to zero, we see that (Dfk)k∈N converges uniformly to Df . Thus

(fk)k∈N is uniformly C1 convergent. �

2 c©Brent Nelson 2017


