1. (a) (3 pts) The operator norm is the quantity

$$
\|T\|:=\left\{\frac{|T v|}{|v|}: v \in V \backslash\{0\}\right\}
$$

(b) ($7 \mathbf{p t s}$) For $f \in C([0,1])$ we have

$$
\left|\delta_{(x, y)}(f)\right|=|(f(x), f(y))| \leq \sqrt{f(x)^{2}+f(y)^{2}} \leq \sqrt{\|f\|_{\infty}^{2}+\|f\|_{\infty}^{2}}=\sqrt{2}\|f\|_{\infty}
$$

Hence $\left\|\delta_{(x, y)}\right\| \leq \sqrt{2}$. On the other hand, if $f(x)=1$ is a constant function. Then $\|f\|_{\infty}=1$ and hence

$$
\left\|\delta_{(x, y)}\right\| \geq\left|\delta_{(x, y)}(f)\right|=|(1,1)|=\sqrt{2}
$$

Thus $\left\|\delta_{(x, y)}\right\|=\sqrt{2}$.
2. (a) (3 pts) R is sublinear if

$$
\lim _{v \rightarrow 0} \frac{R(v)}{|v|}=0
$$

(b) (7 pts) We claim

$$
(D f)_{p}=\left[\begin{array}{cc}
p_{2} & p_{1} \\
1 & 2 p_{2} \\
1 & 1
\end{array}\right]
$$

The corresponding Taylor remainder for $v=\left(v_{1}, v_{2}\right)$ is then

$$
\begin{aligned}
R(v) & =f(p+v)-f(p)-(D f)_{p}(v) \\
& =\left(\begin{array}{c}
\left(p_{1}+v_{1}\right)\left(p_{2}+v_{2}\right) \\
p_{1}+v_{1}+\left(p_{2}+v_{2}\right)^{2} \\
p_{1}+v_{1}+p_{2}+v_{2}
\end{array}\right)-\left(\begin{array}{c}
p_{1} p_{2} \\
p_{1}+p_{2}^{2} \\
p_{1}+p_{2}
\end{array}\right)-\left(\begin{array}{c}
p_{2} v_{1}+p_{1} v_{2} \\
v_{1}+2 p_{2} v_{2} \\
v_{1}+v_{2}
\end{array}\right) \\
& =\left(\begin{array}{c}
v_{1} v_{2} \\
v_{2}^{2} \\
0
\end{array}\right)
\end{aligned}
$$

Now, if $v_{2}=0$, we have $R(v) /|v|=0$. Otherwise, using $|v| \geq\left|v_{2}\right|$ we have

$$
\frac{|R(v)|}{|v|} \leq \frac{\sqrt{\left(v_{1} v_{2}\right)^{2}+v_{2}^{4}}}{\left|v_{2}\right|}=\sqrt{v_{1}^{2}+v_{2}^{2}}=|v|
$$

which clearly tends to zero as $|v|$ does. Hence R is sublinear and our claim holds.
3. (a) (3 pts) T is k-linear if it is linear in each coordinate. That is, for $1 \leq j \leq k, v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}, w \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$ we have

$$
T\left(v_{1}, \ldots, v_{j-1}, v_{j}+\alpha w, v_{j+1}, \ldots, v_{k}\right)=T\left(v_{1}, \ldots, v_{k}\right)+\alpha T\left(v_{1}, \ldots, v_{j-1}, w, v_{j+1}, \ldots, v_{k}\right)
$$

(b) ($7 \mathbf{p t s}$) Using basic differentiation rules, we can compute the second partial derivatives of the component functions of f :

$$
\begin{array}{llll}
\frac{\partial^{2} f_{1}(p)}{\partial x_{1}^{2}}=0 & \frac{\partial^{2} f_{1}(p)}{\partial x_{1} \partial x_{2}}=1 & \frac{\partial^{2} f_{1}(p)}{\partial x_{2} \partial x_{1}}=1 & \frac{\partial^{2} f_{1}(p)}{\partial x_{2}^{2}}=0 \\
\frac{\partial^{2} f_{2}(p)}{\partial x_{1}^{2}}=0 & \frac{\partial^{2} f_{2}(p)}{\partial x_{1} \partial x_{2}}=0 & \frac{\partial^{2} f_{2}(p)}{\partial x_{2} \partial x_{1}}=0 & \frac{\partial^{2} f_{2}(p)}{\partial x_{2}^{2}}=2 \\
\frac{\partial^{2} f_{3}(p)}{\partial x_{1}^{2}}=0 & \frac{\partial^{2} f_{3}(p)}{\partial x_{1} \partial x_{2}}=0 & \frac{\partial^{2} f_{3}(p)}{\partial x_{2} \partial x_{1}}=0 & \frac{\partial^{2} f_{3}(p)}{\partial x_{2}^{2}}=0
\end{array}
$$

Since these are all clearly continuous, we have that $\left(D^{2} f\right)_{p}$ exists.
[Alternate Proof:] We order pairs of basis vectors for \mathbb{R}^{2} as follows:

$$
\left\{\left(e_{1}, e_{1}\right),\left(e_{1}, e_{2}\right),\left(e_{2}, e_{1}\right),\left(e_{2}, e_{2}\right)\right\}
$$

We then claim that $\left(D^{2} f\right)_{p}$ has the following matrix representation (the entries coming from the computations in the previous proof):

$$
\left(D^{2} f\right)_{p}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The corresponding Taylor remainder for $(D f)_{p}$ at $(v, w) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ is:

$$
\begin{aligned}
R(v, w) & =(D f)_{p+v}(w)-(D f)_{p}(w)-\left(D^{2} f\right)_{p}(v, w) \\
& =\left(\begin{array}{c}
\left(p_{2}+v_{2}\right) w_{1}+\left(p_{1}+v_{1}\right) w_{2} \\
w_{1}+2\left(p_{2}+v_{2}\right) w_{2} \\
w_{1}+w_{2}
\end{array}\right)-\left(\begin{array}{c}
p_{2} w_{1}+p_{1} w_{2} \\
w_{1}+2 p_{2} w_{2} \\
w_{1}+w_{2}
\end{array}\right)-\left(\begin{array}{c}
v_{1} w_{2}+v_{2} w_{1} \\
2 v_{2} w_{2} \\
0
\end{array}\right)=0
\end{aligned}
$$

Since this holds for all $w \in \mathbb{R}^{2}$, we have $\|R(v, \cdot)\|=0$. Consequently $\lim _{v \rightarrow 0} \frac{R(v, \cdot)}{|v|}=0$.
4. (a) (3 pts) The sequence is uniformly C^{r} convergent if there exists $f: U \rightarrow \mathbb{R}^{m}$ of class C^{r} such that $\left(D^{i} f_{k}\right)_{k \in \mathbb{N}}$ converges uniformly to $D^{i} f$ on U for each $i=0,1, \ldots, r$.
(b) (7 pts) We claim the sequence is uniformly C^{1} convergent to $f(x, y)=\left(x^{2}, y\right)$. Indeed, we first note that for $(x, y) \in B$

$$
\left|f_{k}(x, y)-f(x, y)\right|=\left|\left(\frac{x}{k}, \frac{1}{k}\right)\right|=\frac{1}{k} \sqrt{x^{2}+1} \leq \frac{1}{k} \sqrt{2}
$$

Since this upper bound holds for all $(x, y) \in B$ and tends to zero, we see that $\left(f_{k}\right)_{k \in \mathbb{N}}$ converges uniformly to f on B. Now, from basic differentiation rules we know the partial derivatives of the component functions of f_{k} and f, and since they are continuous it follows from a theorem proved in lecture these partial derivatives are the entires of the total derivatives. Namely,

$$
\left(D f_{k}\right)_{(x, y)}=\left[\begin{array}{cc}
2 x+\frac{1}{k} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad(D f)_{(x, y)}=\left[\begin{array}{cc}
2 x & 0 \\
0 & 1
\end{array}\right]
$$

Consequently,

$$
\left(D f_{k}\right)_{(x, y)}-(D f)_{(x, y)}=\left[\begin{array}{cc}
\frac{1}{k} & 0 \\
0 & 0
\end{array}\right]
$$

From a homework exercise, we know that the operator norm of this diagonal matrix is $\frac{1}{k}$. Thus $\|(D f)_{(x, y)}-$ $(D f)_{(x, y)} \|=\frac{1}{k}$ for all $(x, y) \in B$. Since this tends to zero, we see that $\left(D f_{k}\right)_{k \in \mathbb{N}}$ converges uniformly to $D f$. Thus $\left(f_{k}\right)_{k \in \mathbb{N}}$ is uniformly C^{1} convergent.

