Name:

Student ID Number:

Instructions:

- 1. You will have 50 minutes to complete the exam.
- 2. The exam is a total of 4 questions and each question is worth 10 points.
- 3. There are two survey questions on Page 6 worth 1 bonus point each.
- 4. Unless stated otherwise, you may use results we proved in class and on the homework.
- 5. No books, notes, calculators, or electronic devices are permitted.
- 6. If you require additional space, please use the reverse side of the pages.
- 7. The exam has a total of 7 pages with the last page reserved for scratch work. Please verify that your copy has all 7 pages.

Question	Score	Points
1.		10
2.		10
3.		10
4.		10
Survey		+2
Total		40

- 1. (a) Let V and W be normed spaces. For a linear transformation $T: V \to W$, define the **operator** norm of T.
 - (b) Let C([0,1]) denote the normed space of continuous functions $f: [0,1] \to \mathbb{R}$ with norm

 $|f|_{\infty} = \sup\{|f(t)|: 0 \le t \le 1\}.$

Fix $x, y \in [0, 1]$ and define a linear transformation $\delta_{(x,y)} \colon C([0, 1]) \to \mathbb{R}^2$ by

$$\delta_{(x,y)}(f) = (f(x), f(y)).$$

Letting \mathbb{R}^2 have the usual norm, determine (with proof) the operator norm of $\delta_{(x,y)}$.

- 2. (a) For a map $R: \mathbb{R}^n \to \mathbb{R}^m$, state what is means for R to be **sublinear**.
 - (b) Consider $f : \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$f(x_1, x_2) = (x_1 x_2, x_1 + x_2^2, x_1 + x_2).$$

For $p = (p_1, p_2) \in \mathbb{R}^2$, compute $(Df)_p$ and prove that the corresponding Taylor remainder is sublinear.

3. (a) Let $k \in \mathbb{N}$. State what it means for a map

$$T: \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ times}} \to \mathbb{R}^m$$

to be k-linear.

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be the function from Question 2.(b). Show that for $p = (p_1, p_2) \in \mathbb{R}^2$, f is twice-differentiable at p.

- 4. (a) Let $U \subset \mathbb{R}^n$ be open and let $f_k \colon U \to \mathbb{R}^m$, $k \in \mathbb{N}$, be functions of class C^r . State what means for the sequence $(f_k)_{k \in \mathbb{N}}$ to be **uniformly** C^r **convergent**.
 - (b) Let $B = \{p \in \mathbb{R}^2 : |p| < 1\}$ be the open unit ball in \mathbb{R}^2 . Consider the functions $f_k : B \to \mathbb{R}^2$ defined by

$$f_k(x_1, x_2) = \left(x_1^2 + \frac{x_1}{k}, x_2 + \frac{1}{k}\right).$$

Show that $(f_k)_{k\in\mathbb{N}}$ is uniformly C^1 convergent.

The following (optional) questions are worth 1 bonus point each:

- Rate the difficulty of homework assignments:
 - (a) They are too easy.
 - (b) They are reasonable.
 - (c) They are too hard.
 - (d) I can't even
 - (e) Other:
- In what way(s) can the class be improved?