Exercises:

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the smooth function defined by

$$
T\left(z_{1}, z_{2}\right)=\left(z_{1}^{2}+z_{2}^{2}, z_{1} z_{2}, z_{1}-z_{2}^{3}\right) .
$$

For $\omega=y_{2} d y_{(1,3)} \in \Omega^{2}\left(\mathbb{R}^{3}\right)$, compute the ascending presentation of $T^{*} \omega$.
2. Let $\varphi \in C_{2}\left(\mathbb{R}^{3}\right)$ be defined by

$$
\varphi(u)=\left(\cos \left(2 \pi u_{1}\right), \sin \left(2 \pi u_{1}\right), u_{2}\right) .
$$

Compute the dipoles $\delta^{1} \varphi$ and $\delta^{2} \varphi$, and the boundary $\partial \varphi$. Describe these (using words or pictures), making sure to note the proper orientations.
3. Let $\omega \in \Omega^{1}\left(\mathbb{R}^{2}\right)$. Assume ω is closed: $d \omega=0$.
(a) For $p, q \in \mathbb{R}^{2}$, let $\varphi, \psi \in C_{1}\left(\mathbb{R}^{2}\right)$ be such that $\varphi(0)=\psi(0)=p$ and $\varphi(1)=\psi(1)=q$. Show that $\int_{\varphi} \omega=\int_{\psi} \omega$.
[Hint: consider $\sigma \in C_{2}\left(\mathbb{R}^{2}\right)$ defined by $\sigma(s, t)=(1-s) \varphi(t)+s \psi(t)$.]
(b) Fix $p \in \mathbb{R}^{2}$. Define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $h(q):=\int_{\varphi} \omega$ where φ is a 1 -cell in \mathbb{R}^{2} satisfying $\varphi(0)=p$ and $\varphi(1)=q$. Show that h is a smooth function with $d h=\omega$.

Solutions:

1. According to the formula we proved in class,

$$
T^{*} \omega=y_{2} \circ T d T_{1} \wedge d T_{3}=T_{2} d T_{1} \wedge d T_{3}=z_{1} z_{2} d T_{1} \wedge d T_{3} .
$$

Now

$$
\begin{aligned}
& d T_{1}=\frac{\partial T_{1}}{\partial z_{1}} d z_{1}+\frac{\partial T_{1}}{\partial z_{2}} d z_{2}=2 z_{1} d z_{1}+2 z_{2} d z_{2} \\
& d T_{3}=\frac{\partial T_{3}}{\partial z_{1}} d z_{1}+\frac{\partial T_{3}}{\partial z_{2}} d z_{2}=d z_{1}-3 z_{2}^{2} d z_{2}
\end{aligned}
$$

Thus using the distributive property and signed commutativity we have

$$
\begin{aligned}
T^{*} \omega & =z_{1} z_{2}\left(2 z_{1} d z_{1}+2 z_{2} d z_{2}\right) \wedge\left(d z_{1}-3 z_{2}^{2} d z_{2}\right) \\
& =z_{1} z_{2}\left(0-6 z_{1} z_{2}^{2} d z_{(1,2)}+2 z_{2} d z_{(2,1)}+0\right) \\
& =z_{1} z_{2}\left(-6 z_{1} z_{2}^{2}-2 z_{2}\right) d z_{(1,2)} \\
& =\left(-6 z_{1}^{2} z_{2}^{3}-2 z_{1} z_{2}^{2}\right) d z_{(1,2)}
\end{aligned}
$$

2. We first compute:

$$
\begin{aligned}
\delta^{1} \varphi(t) & =\varphi \circ \iota^{1,1}(t)-\varphi \circ \iota^{1,1}(t) \\
& =\varphi(1, t)-\varphi(0, t) \\
& =(\cos (2 \pi), \sin (2 \pi), t)-(\cos (0), \sin (0), t) \\
& =(1,0, t)-(1,0, t),
\end{aligned}
$$

which is equal to zero even as a formal difference. Let us visualize this formal difference: as t ranges over $[0,1]$, the first term yields the segment $[(1,0,0),(1,0,1)]$ (oriented upwards), while the second term yields the same segment but oriented downwards.

Next we have compute

$$
\begin{aligned}
\delta^{2} \varphi(t) & =\varphi \circ \iota^{2,1}(t)-\varphi \circ \iota^{2,0}(t) \\
& =\varphi(t, 1)-\varphi(t, 0) \\
& =(\cos (2 \pi t), \sin (2 \pi t), 1)-(\cos (2 \pi t), \sin (2 \pi t), 0) .
\end{aligned}
$$

As t ranges over $[0,1]$, the first term traces out a circle with center $(0,0,1)$ and radius 1 in the plane $z=1$ in the counter-clockwise direction when viewed from above. The second term traces out a circle with center $(0,0,0)$ in the plane $z=0$ in the clockwise direction (because of the negative sign).
We then have for the boundary:

$$
\partial \varphi=\delta^{1} \varphi-\delta^{2} \varphi=0-\delta^{2} \varphi=(\cos (2 \pi t), \sin (2 \pi t), 0)-(\cos (2 \pi t), \sin (2 \pi t), 1)
$$

which can visualized exactly as $\delta^{2} \varphi$ but with the orientations reversed.
3. (a) Letting σ be as in the hint, we have

$$
\begin{aligned}
\delta^{1} \sigma(t) & =\sigma \circ \iota^{1,1}(t)-\sigma \circ \iota^{1,0}(t) \\
& =\sigma(1, t)-\sigma(0, t) \\
& =\psi(t)-\varphi(t)
\end{aligned}
$$

while

$$
\begin{aligned}
\delta^{2} \sigma(s) & =\sigma \circ \iota^{2,1}(s)-\sigma \circ \iota^{2,0}(s) \\
& =\sigma(s, 1)-\sigma(s, 0) \\
& =[(1-s) \varphi(1)+s \psi(1)]-[(1-s) \varphi(0)+s \psi(0)] \\
& =[(1-s) q+s q]-[(1-s) p+s p] \\
& =\{q\}-\{p\} .
\end{aligned}
$$

Now, since $d \omega=0$, we have by the general Stokes' formula:

$$
0=\int_{\sigma} d \omega=\int_{\partial \sigma} \omega=\int_{\delta^{1} \varphi} \omega-\int_{\delta^{2} \varphi} \omega=\int_{\psi} \omega-\int_{\varphi} \omega-\int_{\delta^{2} \varphi} \omega
$$

Since $\delta^{2} \varphi$ is a difference of two constant 1-cells, the last term in the last expression above vanishes. Hence $\int_{\psi} \omega=\int_{\varphi} \omega$ as claimed.
(b) For $q \in \mathbb{R}^{2}$, part (a) implies $h(q)$ does not actually depend on φ and hence we may replace it with any 1 -cell in \mathbb{R}^{2}. So for $q \in \mathbb{R}^{2}$ consider $\psi_{q} \in C_{1}\left(\mathbb{R}^{2}\right)$ defined by

$$
\psi_{q}(t)=(1-t) p+t q
$$

Note that $\frac{\partial\left(\psi_{q}\right)_{i}(t)}{\partial t}=q_{i}-p_{i}, i=1,2$, where $p=\left(p_{1}, p_{2}\right)$ and $q=\left(q_{1}, q_{2}\right)$.
Now, since $\omega \in \Omega^{1}\left(\mathbb{R}^{2}\right)$, we can write $\omega=f d x+g d y$ for some smooth functions $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We then compute

$$
\begin{aligned}
h(q) & =\int_{\psi_{q}} \omega=\int_{\psi_{q}} f d x+g d y \\
& =\int_{0}^{1} f \circ \psi_{q}(t)\left(q_{1}-p_{1}\right)+g \circ \psi_{q}(t)\left(q_{2}-p_{2}\right) d t
\end{aligned}
$$

By a theorem from class, we can take partial derivatives under the integral. Hence, f and g being smooth functions implies all orders of partial derivatives of h exist. In particular, for each $r \in \mathbb{N}$ all the order r partial derivatives of h exist and are continuous (since the order $r+1$ partials exist), which implies h is of class C^{r}. Since this holds for all $r \in \mathbb{N}, h$ is smooth.

Finally, we compute $d h$.

$$
\begin{aligned}
\frac{\partial h}{\partial q_{1}} & =\left(\int_{0}^{1} \frac{\partial}{\partial q_{1}}\left[f \circ \psi_{q}(t)\left(q_{1}-p_{1}\right)\right]+\frac{\partial}{\partial q_{2}}\left[g \circ \psi_{q}(t)\left(q_{2}-p_{2}\right)\right] d t\right) d q_{2} \\
& =\int_{0}^{1} \frac{\partial f\left(\psi_{q}(t)\right)}{\partial x} t\left(q_{1}-p_{1}\right)+f \circ \psi_{q}(t)+\frac{\partial g\left(\psi_{q}(t)\right)}{\partial x} t\left(q_{2}-p_{2}\right) d t
\end{aligned}
$$

Note that $\frac{\partial g}{\partial x}=\frac{\partial f}{\partial y}$ by virtue of $d \omega=0$. Thus we can continue the above computation with

$$
\begin{aligned}
\frac{\partial h}{\partial q_{1}} & =\int_{0}^{1}(D f)_{\psi_{q}(t)}(q-p) t+f \circ \psi_{q}(t) d t \\
& =\int_{0}^{1} \frac{d}{d t}\left[f \circ \psi_{q}(t) t\right] d t=f \circ \psi_{q}(1)-0=f(q)
\end{aligned}
$$

where we have invoked the fundamental theorem of calculus in the second-to-last equality. A similar computation yields $\frac{\partial h}{\partial q_{2}}=g(q)$. Thus $d h=\omega$.

