Exercises:

1. Fix $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $a, b>0$. Consider $\varphi \in C_{1}\left(\mathbb{R}^{2}\right)$ defined by

$$
\varphi(t)=\left(a \cos (2 \pi t)+x_{0}, b \sin (2 \pi t)+y_{0}\right) .
$$

For $\omega=-y_{2} d y_{1} \in \Omega^{1}\left(\mathbb{R}^{2}\right)$, compute $\int_{\varphi} \omega$.
2. Let

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\},
$$

so that $S^{2}=\varphi\left(I^{2}\right)$ for $\varphi \in C_{2}\left(\mathbb{R}^{3}\right)$ defined by

$$
\varphi(s, t)=(\cos (2 \pi s) \sin (\pi t), \sin (2 \pi s) \sin (\pi t), \cos (\pi t)) .
$$

(a) Compute the $(2,1)$-shadow area of $\varphi: \int_{\varphi} d y_{(2,1)}$.
(b) For $\omega=y_{2} d y_{(1,3)} \in \Omega^{2}\left(\mathbb{R}^{3}\right)$, compute $\int_{\varphi} \omega$.
3. Fix $y \in \mathbb{R}^{n}, r>0$, and an ascending $A=\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, n\}^{k}$. Define $\iota \in C_{k}\left(\mathbb{R}^{n}\right)$ by

$$
\iota\left(u_{1}, \ldots, u_{k}\right)=y+r\left(u_{1} e_{i_{1}}+\cdots+u_{k} e_{i_{k}}\right)
$$

where e_{1}, \ldots, e_{n} are the standard basis vectors in \mathbb{R}^{n}. Show that for $I \in\{1, \ldots, n\}^{k}$ and $u \in I^{k}$

$$
\frac{\partial \iota_{I}(u)}{\partial u}= \begin{cases}\operatorname{sgn}(\pi) r^{k} & \text { if } I=\pi A \text { for some } \pi \in S_{k} \\ 0 & \text { otherwise }\end{cases}
$$

4. Let $\omega=\sum f_{A} d y_{A} \in \Omega^{k}\left(\mathbb{R}^{n}\right)$ be in ascending presentation. Define the symmetrization map symm: $\Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow$ $\Omega^{k}\left(\mathbb{R}^{n}\right)$ by

$$
\operatorname{symm}(\omega)=\frac{1}{k!} \sum_{A} \sum_{\pi \in S_{k}} f_{A} d y_{\pi A},
$$

where if $A=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ then $\pi A=\left(i_{\pi(1)}, i_{\pi(2)}, \ldots, i_{\pi(k)}\right)$. Show that if $k>1$, then $\operatorname{symm}(\omega)=0$ for all $\omega \in \Omega^{k}\left(\mathbb{R}^{n}\right)$.
5. Let $\alpha, \beta \in \Omega^{3}\left(\mathbb{R}^{6}\right)$ be defined by

$$
\begin{aligned}
\alpha & :=a_{1} d y_{(1,3,2)}+a_{2} d y_{(4,2,3)}+a_{3} d y_{(4,3,1)} \\
\beta & :=b_{1} d y_{(3,5,6)}+b_{2} d y_{(6,4,5)}+b_{3} d y_{(2,5,3)},
\end{aligned}
$$

where $a_{i}, b_{j}: \mathbb{R}^{6} \rightarrow \mathbb{R}$ are smooth functions for $1 \leq i, j \leq 3$.
(a) Determine the ascending presentations of α and β.
(b) Compute $\alpha \wedge \beta$ using the ascending presentations.
(c) Using the insensitivity to presentation, compute $\alpha \wedge \beta$ with their original presentations and verify that this agrees with the answer in part (b).

Solutions:

1. We first note that

$$
\frac{\partial \varphi_{1}(u)}{\partial u}=-2 \pi a \sin (2 \pi u)
$$

Thus

$$
\begin{aligned}
\int_{\varphi} \omega & =\int_{0}^{1}-\varphi_{2}(u) \frac{\partial \varphi_{1}(u)}{\partial u} d u \\
& =2 \pi a \int_{0}^{1} b \sin ^{2}(2 \pi u)+y_{0} \sin (2 \pi u) d u \\
& =2 \pi a \int_{0}^{1} b \frac{1-\cos (4 \pi u)}{2}+y_{0} \sin (2 \pi u) d u \\
& =2 \pi a\left[\frac{b}{2} u-\frac{b}{8 \pi} \sin (4 \pi u)-\frac{y_{0}}{2 \pi} \cos (2 \pi u)\right]_{0}^{1}=\pi a b
\end{aligned}
$$

Note that this is precisely the area of the ellipse enclosed by the curve $\varphi([0,1])$.
2. (a) We first compute

$$
\begin{aligned}
\frac{\partial \varphi_{(2,1)}(u)}{\partial u} & =\operatorname{det}\left[\begin{array}{cc}
2 \pi \cos \left(2 \pi u_{1}\right) \sin \left(\pi u_{2}\right) & \pi \sin \left(2 \pi u_{1}\right) \cos \left(\pi u_{2}\right) \\
-2 \pi \sin \left(2 \pi u_{1}\right) \sin \left(\pi u_{2}\right) & \pi \cos \left(2 \pi u_{1}\right) \cos \left(\pi u_{2}\right)
\end{array}\right] \\
& =2 \pi^{2} \sin ^{2}\left(2 \pi u_{1}\right) \sin \left(\pi u_{2}\right) \cos \left(\pi u_{2}\right)+2 \pi^{2} \cos ^{2}\left(2 \pi u_{1}\right) \sin \left(\pi u_{2}\right) \cos \left(\pi u_{1}\right) \\
& =2 \pi^{2} \sin \left(\pi u_{2}\right) \cos \left(\pi u_{2}\right)
\end{aligned}
$$

Thus by Fubini's theorem

$$
\begin{aligned}
\int_{\varphi} d y_{(2,1)} & =\int_{0}^{1} \int_{0}^{1} 2 \pi^{2} \sin \left(\pi u_{2}\right) \cos \left(\pi u_{2}\right) d u_{1} d u_{2} \\
& =2 \pi^{2}\left[\frac{1}{2 \pi} \sin ^{2}\left(\pi u_{2}\right)\right]_{0}^{1}=0
\end{aligned}
$$

Note that this is expected value since the top and bottom halves of S^{2} are both projected to (2,1)-plane, with one half having negative area and so canceling the other half.
(b) We first compute

$$
\frac{\partial \varphi_{(1,3)}(u)}{\partial u}=\operatorname{det}\left[\begin{array}{cc}
-2 \pi \sin \left(2 \pi u_{1}\right) \sin \left(\pi u_{2}\right) & \pi \cos \left(2 \pi u_{1}\right) \cos \left(\pi u_{2}\right) \\
0 & -\pi \sin \left(\pi u_{2}\right)
\end{array}\right]=2 \pi^{2} \sin \left(2 \pi u_{1}\right) \sin ^{2}\left(\pi u_{2}\right)
$$

Thus by Fubini's theorem we have

$$
\begin{aligned}
\int_{\varphi} \omega & =\int_{0}^{1} \int_{0}^{1}\left(\sin \left(2 \pi u_{1}\right) \sin \left(\pi u_{2}\right)\right)\left(2 \pi^{2} \sin \left(2 \pi u_{1}\right) \sin ^{2}\left(\pi u_{2}\right)\right) d u_{1} d u_{2} \\
& =2 \pi^{2} \int_{0}^{1} \sin ^{2}\left(2 \pi u_{1}\right) d u_{1} \int_{0}^{1} \sin ^{3}\left(\pi u_{2}\right) d u_{2} \\
& =2 \pi^{2}\left[\frac{u_{1}}{2}-\frac{1}{8 \pi} \sin \left(4 \pi u_{1}\right)\right]_{0}^{1}\left[-\frac{3}{4 \pi} \cos \left(\pi u_{2}\right)+\frac{1}{12 \pi} \cos \left(3 \pi u_{2}\right)\right]_{0}^{1} \\
& =2 \pi^{2}\left[\frac{1}{2}\right]\left[\frac{3}{2 \pi}-\frac{1}{6 \pi}\right]=\frac{4 \pi}{3}
\end{aligned}
$$

Note that this is the volume of the sphere enclosed by S^{2}.
3. For $I \in\{1, \ldots, k\}^{k}$, if I has any repeated entries then we immediately have $\frac{\partial \iota_{I}}{\partial u}=0$, which agrees with the claimed formula since it cannot be rearranged as an ascending k-tuple. Suppose I has no repeated entries and let $\pi \in S_{k}$ be such that $B:=\pi I$ is ascending. Then $\frac{\partial \iota_{I}}{\partial u}=\operatorname{sgn}(\pi) \frac{\partial \iota_{B}}{\partial u}$. Now, for $1 \leq i \leq n$ note that

$$
\iota_{i}(u)= \begin{cases}y_{i}+r u_{j} & \text { if } i=i_{j} \in A \text { for some } 1 \leq j \leq k \\ y_{i} & \text { otherwise }\end{cases}
$$

so that

$$
\frac{\partial \iota_{i}(u)}{\partial u_{j}}=\left\{\begin{array}{ll}
r & \text { if } i=i_{j} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Writing $B=\left(b_{1}, \ldots, b_{k}\right)$, the matrix

$$
\left[\begin{array}{ccc}
\frac{\partial \iota_{b_{1}}(u)}{\partial u_{1}} & \cdots & \frac{\partial \iota_{b_{1}}(u)}{\partial u_{k}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \iota_{b_{k}}(u)}{\partial u_{1}} & \cdots & \frac{\partial \iota_{b_{k}}(u)}{\partial u_{k}}
\end{array}\right]
$$

is r times the identity matrix if $B=A$. Otherwise, if $b_{j} \in B \backslash A$ for some $1 \leq j \leq k$, the matrix has all zeros in its j th row. Hence

$$
\frac{\partial \iota_{B}(u)}{\partial u}=\left\{\begin{array}{ll}
r^{k} & \text { if } B=A \\
0 & \text { otherwise }
\end{array} .\right.
$$

Using $\frac{\partial \iota_{I}}{\partial u}=\operatorname{sgn}(\pi) \frac{\partial \iota_{B}}{\partial u}$ completes the proof.
4. By signed commutativity we have

$$
\begin{aligned}
\operatorname{symm}(\omega) & =\frac{1}{k!} \sum_{A} \sum_{\pi \in S_{k}} \operatorname{sgn}(\pi) f_{A} d y_{A} \\
& =\frac{1}{k!} \sum_{A} f_{A}\left(\sum_{\pi \in S_{k}} \operatorname{sgn}(\pi)\right) d y_{A}
\end{aligned}
$$

We claim for $k>1$ that $\sum_{\pi \in S_{k}} \operatorname{sgn}(\pi)=0$, which will complete the proof. Indeed, define two sets $S_{k}^{ \pm}:=\left\{\pi \in S_{k}: \operatorname{sgn}(\pi)\right\}$. Then

$$
\sum_{\pi \in S_{k}} \operatorname{sgn}(\pi)=\sum_{\pi S_{k}^{+}} 1+\sum_{\pi \in S_{k}^{-}}(-1)=\left|S_{k}^{+}\right|-\left|S_{k}^{-}\right|
$$

and so we must show S_{k}^{+}and S_{k}^{-}have the same cardinality. Since $k>1$, the transposition $(1,2) \in S_{k}$. The map $S_{k} \ni \pi \mapsto(1,2) \pi$ is a bijection (it is its own inverse even), and since

$$
\operatorname{sgn}((1,2) \pi)=\operatorname{sgn}((1,2)) \operatorname{sgn}(\pi)=-\operatorname{sgn}(\pi)
$$

the map sends S_{k}^{+}to S_{k}^{-}and vice versa. Thus, $\left|S_{k}^{-}\right|=\left|(1,2) S_{k}^{+}\right|=\left|S_{k}^{+}\right|$.
5. (a) Using associativity of the wedge product followed by signed commutativity we have

$$
\begin{aligned}
\alpha & =a_{1} d y_{1} \wedge d y_{3} \wedge d y_{2}+a_{2} d y_{4} \wedge d y_{2} \wedge d y_{3}+a_{3} d y_{4} \wedge d y_{3} \wedge d y_{1} \\
& =(-1)^{1} a_{1} d y_{1} \wedge d y_{2} \wedge d y_{3}+(-1)^{2} a_{2} d y_{2} \wedge d y_{3} \wedge d y_{4}+(-1)^{3} d y_{1} \wedge d y_{3} \wedge d y_{4} \\
& =-a_{1} d y_{(1,2,3)}+a_{2} d y_{(2,3,4)}-a_{3} d y_{(1,3,4)}
\end{aligned}
$$

Similarly, we obtain

$$
\beta=b_{1} d y_{(3,5,6)}+b_{2} d y_{(4,5,6)}-b_{3} d y_{(2,3,5)}
$$

(b) In α, note that $d y_{(2,3,4)}$ shares indices with all the simple 3 -forms appearing in β, and similarly for $d y_{(1,3,4)}$. Consequently their wedge products with β will be zero. Using distributivity of \wedge we have

$$
\alpha \wedge \beta=\left(-a_{1} d y_{(1,2,3)}\right) \wedge \beta
$$

Now, of the simple 3 -forms appearing in β, only $b_{2} d y_{(4,5,6)}$ shares no indices with $d y_{(1,2,3)}$. Thus

$$
\alpha \wedge \beta=0+\left(-a_{1} d y_{(1,2,3)}\right) \wedge\left(b_{2} d y_{(4,5,6)}\right)+0=-a_{1} b_{2} d y_{(1,2,3,4,5,6)}
$$

(c) Computing $\alpha \wedge \beta$ directly, the same argument as in part (b) shows that after distributing, the only term that survives is

$$
\alpha \wedge \beta=\left(a_{1} d y_{(1,3,2)}\right) \wedge\left(b_{2} d y_{(6,4,5)}\right)=a_{1} b_{2} d y_{(1,3,2,6,4,5)}
$$

Note that permuting $(1,3,2,6,4,5)$ to $(1,2,3,4,5,6)$ involves 3 inversions $(3,2) \mapsto(2,3),(6,4) \mapsto$ $(4,6)$ followed by $(6,5) \mapsto(5,6)$. Hence

$$
a_{1} b_{2} d y_{(1,3,2,6,4,5)}=(-1)^{3} a_{1} b_{2} d y_{(1,2,3,4,5,6)}=-a_{1} b_{2} d y_{(1,2,3,4,5,6)}
$$

which agrees with our answer from part (b).

