Exercises:

1. Consider $f:[0,1]^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}1-\frac{1}{q} & \text { if } x, y \in \mathbb{Q} \text { with } y=\frac{p}{q} \text { in lowest terms } \\ 1 & \text { otherwise }\end{cases}
$$

Prove that f is Riemann integrable with $\int_{[0,1]^{2}} f=1$.
2. Let $0 \leq \epsilon \leq 1$ and suppose $a, b>0$ satisfy

$$
\frac{1}{(1+\epsilon)^{n}} \leq \frac{a}{b} \leq(1+\epsilon)^{n}
$$

Show that $|a-b| \leq 2^{n} b \epsilon$.
3. Let

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq a^{2}\right\}
$$

and let $f: S \rightarrow \mathbb{R}$ be Riemann integrable. Prove that

$$
\int_{S} f=\int_{0}^{2 \pi} \int_{0}^{a} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

despite the fact that the polar coordinates do not define a C^{1}-diffeomorphism on $R=[0, a] \times[0,2 \pi]$.
[Hint: approximate S by keyholes.]
4. Let $\varphi_{1}, \varphi_{2} \in C_{1}\left(\mathbb{R}^{2}\right)$ be C^{1}-diffeomorphisms such that $\varphi_{1}([0,1])=\varphi_{2}([0,1])$.
(a) Show that either

$$
\left(\varphi_{1}(0), \varphi_{1}(1)\right)=\left(\varphi_{2}(0), \varphi_{2}(1)\right) \quad \text { or } \quad\left(\varphi_{1}(0), \varphi_{1}(1)\right)=\left(\varphi_{2}(1), \varphi_{2}(0)\right)
$$

(b) Show that for any differential 1-form $\omega=f d x+g d y$ we have

$$
\omega\left(\varphi_{1}\right)= \pm \omega\left(\varphi_{2}\right)
$$

where we get a ' + ' if the first case in part (a) holds and we get ' - ' otherwise.
5. Find $\varphi \in C_{3}\left(\mathbb{R}^{3}\right)$, a 3-cell in \mathbb{R}^{3}, such that $\varphi\left(I^{3}\right)$ is the closed ball centered at $(0,0,0)$ with radius 1 .

Solutions:

1. We claim that the discontinuity set D of f is $S=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x, y \leq 1\right.$ and $\left.y \in \mathbb{Q}\right\}$. Indeed, for $x_{0} \in[0,1]$ and $y_{0} \in \mathbb{Q} \cap[0,1]$ with $y_{0}=\frac{p}{q}$ in lowest terms we have (by the density of the rational and irrational numbers in $[0,1])$ that $\operatorname{osc}_{\left(x_{0}, y_{0}\right)}(f) \geq \frac{1}{q}$. Hence $\left(x_{0}, y_{0}\right) \in D$ and so $S \subset D$.

On the other hand, let $\left(x_{0}, y_{0}\right) \in S$; that is, $x_{0} \in[0,1]$ and $y_{0} \in[0,1] \backslash \mathbb{Q}$. Let $\epsilon>0$. Let $N \in \mathbb{N}$ be such that $\frac{1}{N}<\epsilon$. Since y_{0} is irrational, we can find $\delta>0$ small enough so that $\left(y_{0}-\delta, y_{0}+\delta\right)$ does not contain any rationals of the form $\frac{p}{q}$ for $q \leq N$. Then for any $(x, y) \in \mathbb{R}^{2}$ with $\left|(x, y)-\left(x_{0}, y_{0}\right)\right|<\delta$, we have $\left|y-y_{0}\right|<\delta$. This means if y is rational, then it is of the form $\frac{p}{q}$ in lowest terms for $q>N$. In any case, we have $f(x, y) \geq 1-\frac{1}{N}$ so that

$$
\left|f\left(x_{0}, y_{0}\right)-f(x, y)\right|=1-f(x, y) \leq 1-\left(1-\frac{1}{N}\right)=\frac{1}{N}<\epsilon
$$

Thus f is continuous at $\left(x_{0}, y_{0}\right)$ and $S^{c} \subset D^{c}$.

We have shown $D=S$ and we note that S is a zero set since it is the countable union of zero sets (line segments):

$$
S=\bigcup_{y \in \mathbb{Q} \cap[0,1]}[0,1] \times\{y\} .
$$

Thus f is Riemann integrable by the Riemann-Lebesgue theorem.
Now, consider the constant function $g:[0,1]^{2} \rightarrow \mathbb{R}, g(x, y)=1$. Then

$$
P=\left\{(x, y) \in[0,1]^{2}:|f(x, y)-g(x, y)|>0\right\}=\mathbb{Q}^{2} \cap[0,1]^{2}
$$

which is a zero set (it is a subset of S above). Thus by Exercise 3 from Homework 6 we have

$$
\int_{[0,1]^{2}} f=\int_{[0,1]^{2}} g=\left|[0,1]^{2}\right|=1
$$

2. Since $b>0$, we can multiply both inequalities by b to obtain:

$$
\frac{b}{(1+\epsilon)^{n}} \leq a \leq b(1+\epsilon)^{n}
$$

Subtracting b from each inequality then yields

$$
-b\left(1-\frac{1}{(1+\epsilon)^{n}}\right) \leq a-b \leq b\left((1+\epsilon)^{n}-1\right)
$$

Note that

$$
1-\frac{1}{(1+\epsilon)^{n}}=\frac{(1+\epsilon)^{n}-1}{(1+\epsilon)^{n}} \leq(1+\epsilon)^{n}-1
$$

So we have

$$
-b\left((1+\epsilon)^{n}-1\right) \leq a-b \leq b\left((1+\epsilon)^{n}-1\right)
$$

Thus

$$
\begin{aligned}
|a-b| & \leq b\left((1+\epsilon)^{n}-1\right) \\
& =b \epsilon\left((1+\epsilon)^{n-1}+(1+\epsilon)^{n-2}+\cdots+(1+\epsilon)+1\right) \\
& \leq b \epsilon\left(2^{n-1}+2^{n-2}+\cdots+2+1\right) \\
& =b \epsilon \frac{2^{n}-1}{2-1} \leq 2^{n} b \epsilon
\end{aligned}
$$

3. Define $\varphi: R \rightarrow S$ by

$$
\varphi(r, \theta)=(r \cos \theta, r \sin \theta)
$$

While φ is not a C^{1}-diffeomorphism on R (it fails to be injective for example), it is C^{1}-diffeomorphism on $U=(0, \infty) \times(0,2 \pi)$. Indeed, it is easily seen to be injective on U and it is of class C^{1} since its partial derivatives exist and are continuous. Moreover,

$$
\operatorname{Jac}_{(r, \theta)}(\varphi)=\operatorname{det}\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]=r \cos ^{2} \theta+r \sin ^{2} \theta=r>0
$$

The inverse function theorem implies φ^{-1} is locally of class C^{1} at (r, θ), but since this holds for every point in U we obtain that $\varphi: U \rightarrow \varphi(U)$ is indeed a C^{1}-diffeomorphism.
Now, for $\epsilon>0$ define $R_{\epsilon}=[\epsilon, a] \times[\epsilon, 2 \pi-\epsilon] \subset U$. Then the change of variables formula along with Fubini's theorem implies

$$
\int_{\varphi\left(R_{\epsilon}\right)} f=\int_{R_{\epsilon}} f \circ \varphi|\operatorname{Jac}(\varphi)|=\int_{\epsilon}^{2 \pi-\epsilon} \int_{\epsilon}^{a} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

We will show that letting ϵ tend to zero yields the desired formula. Let $M=\sup \{|f(z)|: z \in S\}$.
We first consider the left-hand side:

$$
\left|\int_{S} f-\int_{\varphi\left(R_{\epsilon}\right)} f\right| \leq \int_{S \backslash \varphi\left(R_{\epsilon}\right)}|f| \leq M\left|S \backslash \varphi\left(R_{\epsilon}\right)\right|
$$

where $S \backslash \varphi\left(R_{\epsilon}\right) \mid$ is a keyhole. It is contained in the union of the closed ball centered centered at $(0,0)$ with radius ϵ and $\varphi\left(T_{\epsilon}\right)$ where

$$
T_{\epsilon}=[\epsilon, a] \times[-\epsilon, \epsilon] .
$$

Since φ is (by the same argument as above) a C^{1}-diffeomorphism on $(0, \infty) \times(-\pi, \pi)$, the change of variables formula and Fubini's theorem implies

$$
\left|\varphi\left(T_{\epsilon}\right)\right|=\int_{\varphi\left(T_{\epsilon}\right)} 1=\int_{T_{\epsilon}}|\operatorname{Jac}(\varphi)|=\int_{-\epsilon}^{\epsilon} \int_{\epsilon}^{a} r d r d \theta=\epsilon\left[a^{2}-\epsilon\right]
$$

Thus

$$
\left|\int_{S} f-\int_{\varphi\left(R_{\epsilon}\right)} f\right| \leq M\left(\pi \epsilon^{2}+\epsilon\left[a^{2}-\epsilon\right]\right),
$$

which tends to zero as ϵ does.
Next, for the right-hand side we have:

$$
\begin{aligned}
\left|\int_{R} f \circ \varphi\right| \operatorname{Jac}(\varphi)\left|-\int_{R_{\epsilon}} f \circ \varphi\right| \operatorname{Jac}(\varphi)|\mid & \leq \int_{R \backslash R_{\epsilon}} M a d r d \theta \\
& =M a[2 \pi a-(2 \pi-2 \epsilon)(a-\epsilon)] \\
& =M a\left[2 \pi \epsilon+2 \epsilon a-2 \epsilon^{2}\right],
\end{aligned}
$$

which tends to zero as ϵ does. Thus

$$
\int_{R} f \circ \varphi|\operatorname{Jac}(\varphi)|=\lim _{\epsilon \rightarrow 0} \int_{R_{\epsilon}} f \circ \varphi|\operatorname{Jac}(\varphi)|=\lim _{\epsilon \rightarrow 0} \int_{\varphi\left(R_{\epsilon}\right)} f=\int_{S} f
$$

Applying Fubini's theorem to the left-hand side above yields the claimed formula.
4. (a) Let $t_{0}=\varphi_{1}^{-1}\left(\varphi_{2}(0)\right)$. Then

$$
\left[0, t_{0}\right) \cup\left(t_{0}, 1\right]=\varphi_{1}^{-1}\left(\varphi_{2}((0,1])\right)
$$

Since $(0,1]$ is connected, so is the above set. But this is only possible if $t_{0}=0$ or $t_{0}=1$. The same argument implies $t_{1}:=\varphi_{1}^{-1}\left(\varphi_{2}(1)\right)$ is either 0 or 1 . If $t_{0}=0$, then necessarily $t_{1}=1$ and hence $\varphi_{1}(0)=\varphi_{2}(0)$ and $\varphi_{1}(1)=\varphi_{2}(1)$. If $t_{0}=1$, we have $t_{1}=0$ and hence $\varphi_{1}(0)=\varphi_{2}(1)$ and $\varphi_{1}(1)=\varphi_{2}(0)$.
(b) Define $\psi:=\varphi_{2}^{-1} \circ \varphi_{1}$, which is a C^{1}-diffeomorphism from $[0,1]$ to itself. Write $\varphi_{j}(t)=\left(x_{j}(t), y_{j}(t)\right)$, $j=1,2$. Then for a differential 1-form $f d x+g d y$ we have

$$
\begin{aligned}
(f d x+g d y)\left(\varphi_{1}\right) & =\int_{0}^{1} f\left(\phi_{1}(t)\right) \frac{d x_{1}(t)}{d t}+g\left(\varphi_{1}(t)\right) \frac{d y_{1}(t)}{d t} d t \\
& =\int_{0}^{1} f\left(\varphi_{2}(\psi(t))\right) \frac{d x_{2}(\psi(t))}{d t}+g\left(\varphi_{2}(\psi(t))\right) \frac{d y_{2}(\psi(t))}{d t} d t \\
& =\int_{0}^{1} f\left(\varphi_{2}(\psi(t))\right) \frac{d x_{2}}{d \psi} \psi^{\prime}(t) d t+g\left(\varphi_{2}(\psi(t))\right) \frac{d y_{2}}{d \psi} \psi^{\prime}(t) d t \\
& = \pm \int_{0}^{1} f\left(\varphi_{2}(s)\right) \frac{d x_{2}(s)}{d s}+g\left(\varphi_{2}(s)\right) \frac{d y_{2}(s)}{d s} d s \\
& = \pm(f d x+g d y)\left(\varphi_{2}\right)
\end{aligned}
$$

where the second to last equality follows by the one-dimensional change of variables formula. The sign is determined by whether $\psi(0)=0$ and $\psi(1)=1$ or $\psi(0)=1$ and $\psi(1)=0$ (which are the only two possibilities by part (b)). In the latter case, we pick up a minus sign by changing $\int_{1}^{0} \cdot d t$ to $\int_{0}^{1} \cdot d t$.
5. We appeal to spherical coordinates. Define

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \cos \left(2 \pi x_{2}\right) \sin \left(\pi x_{3}\right), x_{1} \sin \left(2 \pi x_{2}\right) \sin \left(\pi x_{3}\right), x_{1} \cos \left(\pi x_{3}\right)\right)
$$

This smooth since all of its mixed partials exist and are continuous. Thus $\varphi \in C_{3}\left(\mathbb{R}^{3}\right)$. Furthermore, it is clear that φ maps I^{3} onto the desired set.
[Note that φ is not injective, and hence not a diffeomorphism, but this does not preclude it from being a 3-cell.]

