
Math 105 Homework 6 Solutions 2/28/2018

Exercises:
1. Let S ⊂ R2 be a zero set. Show that its interior,

S◦ := {z ∈ S : ∃r > 0 such that B(z, r) ⊂ S},

is empty.

2. Let f : R2 → R be bounded. Recall that for z ∈ R2, the oscillation of f at z is the quantity

oscz(f) := lim
r→0

[sup(f(B(z, r)))− inf(f(B(z, r)))] .

(a) Show that f is continuous at z ∈ R2 if and only if oscz(f) = 0.

(b) For S ⊂ R2, show that χS is discontinuous at z if and only if z ∈ ∂S.

3. Let R ⊂ R2 be a rectangle. Suppose f, g : R→ R are Riemann integrable over R and that

P := {z ∈ R : |f(z)− g(z)| > 0}

is a zero set. Show that
∫
R
f =

∫
R
g.

[Hint: first show that for z ∈ P , oscz(|f − g|) ≥ |f(z) − g(z)|, then proceed as in the proof of the
Riemann–Lebesgue Theorem.]

4. Let S ⊂ R2 be bounded.

(a) Show that if S is Riemann measurable then so are S◦ (its interior) and S (its closure).

(b) Show that if S◦ and S are Riemann measurable with |S◦| = |S|, then S is Riemann integrable
with the same area.

(c) Show that the hypothesis |S◦| = |S| in the previous part is a necessary by considering S =
Q2 ∩ [0, 1]2.

5. Use the volume multiplier formula to prove that the area of a parallelogram is the length of its base
times its height.

———————————————————————————————————————————–

Solutions:
1. Suppose, towards a contradiction that there exists z ∈ S◦. Then by definition of the interior there

exists r > 0 such that B(z, r) ⊂ S. In particular, this open ball contains the open square centered at
z with side-length

√
2r. Hence any covering of S by open rectangles must necessarily cover this open

square and therefore have total area at least 2r2, contradicting S being a zero set. �

2. (a) (⇒) : Suppose f is continuous at z ∈ R2. Let ε > 0, then there exists δ > 0 such that whenever
w ∈ B(z, δ), |f(w)− f(z)| < ε

2 . Consequently, for any w,w′ ∈ B(z, δ) we have

f(w)− f(w′) ≤ |f(w)− f(w′)| ≤ |f(w)− f(z)|+ |f(z)− f(w′)| < ε

2
+
ε

2
= ε.

Taking the supremum over w and the infimum over w′ yields

sup(f(B(z, δ)))− inf(f(B(z, δ))) ≤ ε.

This clearly holds for r ≤ δ as well and hence oscz(f) ≤ ε. As ε > 0 was arbitrary, we must have
oscz(f) = 0.

(⇐) : Suppose oscz(f) = 0. Let ε > 0. Take r > 0 small enough so that

sup(f(B(z, r)))− inf(f(B(z, r))) < ε.

Then for δ = r, if w ∈ B(z, δ) we have

|f(w)− f(z)| ≤ sup(f(B(z, r)))− inf(f(B(z, r))) < ε.

Thus f is continuous at z. �
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(b) (⇒) : Suppose χS is discontinuous at z. If z 6∈ ∂S, then there exists r > 0 such that either
B(z, r)∩S = ∅ or B(z, r)∩Sc = ∅. In the former case, χS(w) = 0 for all w ∈ B(z, r) which imply
oscz(χS) = 0. In the latter case, χS(w) = 1 for all w ∈ B(z, r) which again implies oscz(χS) = 0.
So in either case, by part (a), we contradict χS being discontinuous at z.

(⇐) : Suppose z ∈ ∂S. Then for every r > 0 we have B(z, r) ∩ S 6= ∅ and B(z, r) ∩ Sc 6= ∅. So
leting w ∈ B(z, r) ∩ S and w′ ∈ B(z, r) ∩ Sc we have

sup(χS(B(z, r)))− inf(χS(B(z, r))) ≥ χS(w)− χS(w′) = 1− 0 = 1.

Since this holds for each r > 0, we have oscz(χS) ≥ 1. (In fact, given the bounds on χS , it easily
follows that oscz(χS) = 1.) �

3. Denote h = |f − g|. Then h is Riemann integrable and∣∣∣∣∫
R

f −
∫
R

g

∣∣∣∣ ≤ ∫
R

h.

So it suffices to show
∫
R
h = 0.

Observe that
P = {z ∈ R : h(z) > 0}.

For each k ∈ N, define

Pk :=

{
z ∈ R : h(z) ≥ 1

k

}
,

So that P =
⋃
k∈N

Pk.

Fix k ∈ N. We claim Pk ⊂ Dk where

Dk :=

{
z ∈ R : oscz(h) ≥ 1

k

}
.

Indeed, by Exercise 1 we have P ◦ = ∅. Therefore, for every every z ∈ Pk ⊂ P , B(z, r) ∩ P c 6= ∅ for
every r > 0. In particular, for every r > 0 there exists w ∈ B(z, r) ∩ P c and so

sup(h(B(z, r)))− inf(h(B(z, r))) ≥ h(z)− h(w) ≥ 1

k
− 0 =

1

k
.

Thus oscz(h) ≥ 1
k and the claim follows. Observe that the claim implies Dc

k ⊂ P ck and so for every
z ∈ Dc

k we have h(z) < 1
k .

Let ε > 0. Since h is Riemann integrable, Dk is necessarily a zero set which we can therefore cover
with open rectangles {S`}` satisfying

∑
|S`| < ε. For every z ∈ Dc

k there exists an open neighborhood
Wz such that

|h(w)− h(w′)| < 1

k

for all w,w′ ∈Wz. Note that for any w ∈Wz we have

h(w) = h(w)− h(z) + h(z) ≤ |h(w)− h(z)|+ h(z) <
1

k
+

1

k
=

2

k
.

The open rectangles S` along with the open neighborhoods Wz form an open cover for the compact
set R. Hence there is a positive Lebesgue number λ > 0 associated with this open cover.

Let G be a grid on R with mesh(G) < λ. Then∫
R

h ≤ U(h,G) =
∑

Mij |Rij |.
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Now, since the diameter of Rij is less than mesh(G) < λ, each Rij is contained in either some S` or
some Wz. Splitting the above sum into two sums according to this have∫

R

h ≤M
∑
|S`|+

∑
Rij⊂Wz

2

k
|Rij | ≤Mε+

2

k
|R|,

where M = sup(h(R)) (which is finite because h is Riemann integrable and therefore bounded). Since
ε > 0 was arbitrary, we have

∫
R
h ≤ 2

k |R| and letting k tend to infinity we have
∫
R
h ≤ 0. Since h ≥ 0,

we immediately have the other inequality and so
∫
R
h = 0. �

4. (a) We claim ∂(S◦), ∂(S) ⊂ ∂S. Indeed, the inclusions S◦ ⊂ S ⊂ S imply S◦ ⊂ S and S◦ ⊂ (S)◦.
Hence

∂(S◦) = S◦ \ (S◦)◦ = S◦ \ S◦ ⊂ S \ S◦ = ∂S,

and
∂(S) = S \ (S)◦ = S \ (S)◦ ⊂ S \ S◦ = ∂S.

Thus, since S is Riemann measurable we must have ∂S is a zero set and therefore the boundaries
of S◦ and S are zero sets and hence Riemann measurable. �

(b) These sets being Riemann measurable with the same area is equivalent to f1 := χS◦ and f2 :=
χS being Riemann integrable with

∫
f1 = |S◦| = |S| =

∫
f2. Denote this common value by

A. Consequently, for ε > 0 there exists δ1, δ2 > 0 such that whenever G is a grid on R with
mesh(G) < δ1 we have

L(f1, G) ≥ A− ε,

and whenever mesh(G) < δ2 we have

U(f2, G) ≤ A+ ε.

Let δ = min{δ1, δ2} > 0 and let G be a grid on R with mesh(G) < δ. Then using f1 ≤ χS ≤ f2
we have

U(χS , G) ≤ U(f1, G) ≤ A+ ε ≤ L(f1, G) + 2ε ≤ L(χS , G) + 2ε ≤ U(χS , G) + 2ε.

Letting ε tend to zero yields equalities in the above and hence χS is Riemann integrable with
|S| =

∫
χS = A = |S◦| = |S|. �

(c) Note that S = Q2∩ [0, 1]2 is countable and dense in [0, 1]2. The former implies it is a zero set and
so by Exercise 1, S◦ = ∅. The latter implies S = [0, 1]2. Hence |S◦| = 0 6= 1 = |S|. Moreover, we
have ∂S = S \ S◦ = [0, 1]2 which is not a zero set. Hence S is not Riemann measurable. �

5. Consider an arbitrary parallelogram P with base length b and height h. We can place such a parallel-
ogram in R2 with its base on the x-axis and bottom left vertex at the origin. Its vertices are then on
the coordinates (0, 0), (b, 0), (x, h), and (x+ b, h) for some x ∈ R. Observe that P is the image of the
rectangle [0, b]× [0, h] under the linear transformation given by

T =

[
1 x

h
0 1

]
,

since the T sends the vectors (b, 0) and (0, h) to (b, 0) and (x, h). Since det(T ) = 1, it follows that
|P | = |[0, b]× [0, h]| = bh. �
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