Exercises:

1. Let $S \subset \mathbb{R}^{2}$ be a zero set. Show that its interior,

$$
S^{\circ}:=\{z \in S: \exists r>0 \text { such that } B(z, r) \subset S\}
$$

is empty.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be bounded. Recall that for $z \in \mathbb{R}^{2}$, the oscillation of f at z is the quantity

$$
\operatorname{osc}_{z}(f):=\lim _{r \rightarrow 0}[\sup (f(B(z, r)))-\inf (f(B(z, r)))]
$$

(a) Show that f is continuous at $z \in \mathbb{R}^{2}$ if and only if $\operatorname{osc}_{z}(f)=0$.
(b) For $S \subset \mathbb{R}^{2}$, show that χ_{S} is discontinuous at z if and only if $z \in \partial S$.
3. Let $R \subset \mathbb{R}^{2}$ be a rectangle. Suppose $f, g: R \rightarrow \mathbb{R}$ are Riemann integrable over R and that

$$
P:=\{z \in R:|f(z)-g(z)|>0\}
$$

is a zero set. Show that $\int_{R} f=\int_{R} g$.
[Hint: first show that for $z \in P, \operatorname{osc}_{z}(|f-g|) \geq|f(z)-g(z)|$, then proceed as in the proof of the Riemann-Lebesgue Theorem.]
4. Let $S \subset \mathbb{R}^{2}$ be bounded.
(a) Show that if S is Riemann measurable then so are S° (its interior) and \bar{S} (its closure).
(b) Show that if S° and \bar{S} are Riemann measurable with $\left|S^{\circ}\right|=|\bar{S}|$, then S is Riemann integrable with the same area.
(c) Show that the hypothesis $\left|S^{\circ}\right|=|\bar{S}|$ in the previous part is a necessary by considering $S=$ $\mathbb{Q}^{2} \cap[0,1]^{2}$.
5. Use the volume multiplier formula to prove that the area of a parallelogram is the length of its base times its height.

Solutions:

1. Suppose, towards a contradiction that there exists $z \in S^{\circ}$. Then by definition of the interior there exists $r>0$ such that $B(z, r) \subset S$. In particular, this open ball contains the open square centered at z with side-length $\sqrt{2} r$. Hence any covering of S by open rectangles must necessarily cover this open square and therefore have total area at least $2 r^{2}$, contradicting S being a zero set.
2. (a) (\Rightarrow) : Suppose f is continuous at $z \in \mathbb{R}^{2}$. Let $\epsilon>0$, then there exists $\delta>0$ such that whenever $w \in B(z, \delta),|f(w)-f(z)|<\frac{\epsilon}{2}$. Consequently, for any $w, w^{\prime} \in B(z, \delta)$ we have

$$
f(w)-f\left(w^{\prime}\right) \leq\left|f(w)-f\left(w^{\prime}\right)\right| \leq|f(w)-f(z)|+\left|f(z)-f\left(w^{\prime}\right)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Taking the supremum over w and the infimum over w^{\prime} yields

$$
\sup (f(B(z, \delta)))-\inf (f(B(z, \delta))) \leq \epsilon
$$

This clearly holds for $r \leq \delta$ as well and hence $\operatorname{osc}_{z}(f) \leq \epsilon$. As $\epsilon>0$ was arbitrary, we must have $\operatorname{osc}_{z}(f)=0$.
$(\Leftarrow):$ Suppose $\operatorname{osc}_{z}(f)=0$. Let $\epsilon>0$. Take $r>0$ small enough so that

$$
\sup (f(B(z, r)))-\inf (f(B(z, r)))<\epsilon
$$

Then for $\delta=r$, if $w \in B(z, \delta)$ we have

$$
|f(w)-f(z)| \leq \sup (f(B(z, r)))-\inf (f(B(z, r)))<\epsilon
$$

Thus f is continuous at z.
(b) (\Rightarrow) : Suppose χ_{S} is discontinuous at z. If $z \notin \partial S$, then there exists $r>0$ such that either $B(z, r) \cap S=\emptyset$ or $B(z, r) \cap S^{c}=\emptyset$. In the former case, $\chi_{S}(w)=0$ for all $w \in B(z, r)$ which imply $\operatorname{osc}_{z}\left(\chi_{S}\right)=0$. In the latter case, $\chi_{S}(w)=1$ for all $w \in B(z, r)$ which again implies $\operatorname{osc}_{z}\left(\chi_{S}\right)=0$. So in either case, by part (a), we contradict χ_{S} being discontinuous at z.
(\Leftarrow) : Suppose $z \in \partial S$. Then for every $r>0$ we have $B(z, r) \cap S \neq \emptyset$ and $B(z, r) \cap S^{c} \neq \emptyset$. So leting $w \in B(z, r) \cap S$ and $w^{\prime} \in B(z, r) \cap S^{c}$ we have

$$
\sup \left(\chi_{S}(B(z, r))\right)-\inf \left(\chi_{S}(B(z, r))\right) \geq \chi_{S}(w)-\chi_{S}\left(w^{\prime}\right)=1-0=1
$$

Since this holds for each $r>0$, we have $\operatorname{osc}_{z}\left(\chi_{S}\right) \geq 1$. (In fact, given the bounds on χ_{S}, it easily follows that $\operatorname{osc}_{z}\left(\chi_{S}\right)=1$.)
3. Denote $h=|f-g|$. Then h is Riemann integrable and

$$
\left|\int_{R} f-\int_{R} g\right| \leq \int_{R} h
$$

So it suffices to show $\int_{R} h=0$.
Observe that

$$
P=\{z \in R: h(z)>0\} .
$$

For each $k \in \mathbb{N}$, define

$$
P_{k}:=\left\{z \in R: h(z) \geq \frac{1}{k}\right\}
$$

So that $P=\bigcup_{k \in \mathbb{N}} P_{k}$.
Fix $k \in \mathbb{N}$. We claim $P_{k} \subset D_{k}$ where

$$
D_{k}:=\left\{z \in R: \operatorname{osc}_{z}(h) \geq \frac{1}{k}\right\}
$$

Indeed, by Exercise 1 we have $P^{\circ}=\emptyset$. Therefore, for every every $z \in P_{k} \subset P, B(z, r) \cap P^{c} \neq \emptyset$ for every $r>0$. In particular, for every $r>0$ there exists $w \in B(z, r) \cap P^{c}$ and so

$$
\sup (h(B(z, r)))-\inf (h(B(z, r))) \geq h(z)-h(w) \geq \frac{1}{k}-0=\frac{1}{k}
$$

Thus $\operatorname{osc}_{z}(h) \geq \frac{1}{k}$ and the claim follows. Observe that the claim implies $D_{k}^{c} \subset P_{k}^{c}$ and so for every $z \in D_{k}^{c}$ we have $h(z)<\frac{1}{k}$.
Let $\epsilon>0$. Since h is Riemann integrable, D_{k} is necessarily a zero set which we can therefore cover with open rectangles $\left\{S_{\ell}\right\}_{\ell}$ satisfying $\sum\left|S_{\ell}\right|<\epsilon$. For every $z \in D_{k}^{c}$ there exists an open neighborhood W_{z} such that

$$
\left|h(w)-h\left(w^{\prime}\right)\right|<\frac{1}{k}
$$

for all $w, w^{\prime} \in W_{z}$. Note that for any $w \in W_{z}$ we have

$$
h(w)=h(w)-h(z)+h(z) \leq|h(w)-h(z)|+h(z)<\frac{1}{k}+\frac{1}{k}=\frac{2}{k} .
$$

The open rectangles S_{ℓ} along with the open neighborhoods W_{z} form an open cover for the compact set R. Hence there is a positive Lebesgue number $\lambda>0$ associated with this open cover.
Let G be a grid on R with $\operatorname{mesh}(G)<\lambda$. Then

$$
\int_{R} h \leq U(h, G)=\sum M_{i j}\left|R_{i j}\right|
$$

Now, since the diameter of $R_{i j}$ is less than $\operatorname{mesh}(G)<\lambda$, each $R_{i j}$ is contained in either some S_{ℓ} or some W_{z}. Splitting the above sum into two sums according to this have

$$
\int_{R} h \leq M \sum\left|S_{\ell}\right|+\sum_{R_{i j} \subset W_{z}} \frac{2}{k}\left|R_{i j}\right| \leq M \epsilon+\frac{2}{k}|R|,
$$

where $M=\sup (h(R))$ (which is finite because h is Riemann integrable and therefore bounded). Since $\epsilon>0$ was arbitrary, we have $\int_{R} h \leq \frac{2}{k}|R|$ and letting k tend to infinity we have $\int_{R} h \leq 0$. Since $h \geq 0$, we immediately have the other inequality and so $\int_{R} h=0$.
4. (a) We claim $\partial\left(S^{\circ}\right), \partial(\bar{S}) \subset \partial S$. Indeed, the inclusions $S^{\circ} \subset S \subset \bar{S}$ imply $\overline{S^{\circ}} \subset \bar{S}$ and $S^{\circ} \subset(\bar{S})^{\circ}$. Hence

$$
\partial\left(S^{\circ}\right)=\overline{S^{\circ} \backslash\left(S^{\circ}\right)^{\circ}=\overline{S^{\circ}} \backslash S^{\circ} \subset \bar{S} \backslash S^{\circ}=\partial S, ~ ; ~}
$$

and

$$
\partial(\bar{S})=\overline{\bar{S}} \backslash(\bar{S})^{\circ}=\bar{S} \backslash(\bar{S})^{\circ} \subset \bar{S} \backslash S^{\circ}=\partial S
$$

Thus, since S is Riemann measurable we must have ∂S is a zero set and therefore the boundaries of S° and \bar{S} are zero sets and hence Riemann measurable.
(b) These sets being Riemann measurable with the same area is equivalent to $f_{1}:=\chi_{S} \circ$ and $f_{2}:=$ $\chi_{\bar{S}}$ being Riemann integrable with $\int f_{1}=\left|S^{\circ}\right|=|\bar{S}|=\int f_{2}$. Denote this common value by A. Consequently, for $\epsilon>0$ there exists $\delta_{1}, \delta_{2}>0$ such that whenever G is a grid on R with $\operatorname{mesh}(G)<\delta_{1}$ we have

$$
L\left(f_{1}, G\right) \geq A-\epsilon
$$

and whenever $\operatorname{mesh}(G)<\delta_{2}$ we have

$$
U\left(f_{2}, G\right) \leq A+\epsilon
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$ and let G be a grid on R with $\operatorname{mesh}(G)<\delta$. Then using $f_{1} \leq \chi_{S} \leq f_{2}$ we have

$$
U\left(\chi_{S}, G\right) \leq U\left(f_{1}, G\right) \leq A+\epsilon \leq L\left(f_{1}, G\right)+2 \epsilon \leq L\left(\chi_{S}, G\right)+2 \epsilon \leq U\left(\chi_{S}, G\right)+2 \epsilon
$$

Letting ϵ tend to zero yields equalities in the above and hence χ_{S} is Riemann integrable with $|S|=\int \chi_{S}=A=\left|S^{\circ}\right|=|\bar{S}|$.
(c) Note that $S=\mathbb{Q}^{2} \cap[0,1]^{2}$ is countable and dense in $[0,1]^{2}$. The former implies it is a zero set and so by Exercise $1, S^{\circ}=\emptyset$. The latter implies $\bar{S}=[0,1]^{2}$. Hence $\left|S^{\circ}\right|=0 \neq 1=|\bar{S}|$. Moreover, we have $\partial S=\bar{S} \backslash S^{\circ}=[0,1]^{2}$ which is not a zero set. Hence S is not Riemann measurable.
5. Consider an arbitrary parallelogram P with base length b and height h. We can place such a parallelogram in \mathbb{R}^{2} with its base on the x-axis and bottom left vertex at the origin. Its vertices are then on the coordinates $(0,0),(b, 0),(x, h)$, and $(x+b, h)$ for some $x \in \mathbb{R}$. Observe that P is the image of the rectangle $[0, b] \times[0, h]$ under the linear transformation given by

$$
T=\left[\begin{array}{ll}
1 & \frac{x}{h} \\
0 & 1
\end{array}\right]
$$

since the T sends the vectors $(b, 0)$ and $(0, h)$ to $(b, 0)$ and (x, h). Since $\operatorname{det}(T)=1$, it follows that $|P|=|[0, b] \times[0, h]|=b h$.

