Exercises:

1. Let $S \subset \mathbb{R}^2$ be a zero set. Show that its interior,

 $S^{\circ} := \{ z \in S \colon \exists r > 0 \text{ such that } B(z, r) \subset S \},\$

is empty.

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be bounded. Recall that for $z \in \mathbb{R}^2$, the oscillation of f at z is the quantity

$$\operatorname{osc}_{z}(f) := \lim_{r \to 0} \left[\sup(f(B(z, r))) - \inf(f(B(z, r))) \right].$$

- (a) Show that f is continuous at $z \in \mathbb{R}^2$ if and only if $\operatorname{osc}_z(f) = 0$.
- (b) For $S \subset \mathbb{R}^2$, show that χ_S is discontinuous at z if and only if $z \in \partial S$.
- 3. Let $R \subset \mathbb{R}^2$ be a rectangle. Suppose $f, g \colon R \to \mathbb{R}$ are Riemann integrable over R and that

$$P := \{ z \in R \colon |f(z) - g(z)| > 0 \}$$

is a zero set. Show that $\int_B f = \int_B g$.

[Hint: first show that for $z \in P$, $\operatorname{osc}_z(|f - g|) \ge |f(z) - g(z)|$, then proceed as in the proof of the Riemann–Lebesgue Theorem.]

- 4. Let $S \subset \mathbb{R}^2$ be bounded.
 - (a) Show that if S is Riemann measurable then so are S° (its interior) and \overline{S} (its closure).
 - (b) Show that if S° and \overline{S} are Riemann measurable with $|S^{\circ}| = |\overline{S}|$, then S is Riemann integrable with the same area.
 - (c) Show that the hypothesis $|S^{\circ}| = |\overline{S}|$ in the previous part is a necessary by considering $S = \mathbb{Q}^2 \cap [0, 1]^2$.
- 5. Use the volume multiplier formula to prove that the area of a parallelogram is the length of its base times its height.

Solutions:

- 1. Suppose, towards a contradiction that there exists $z \in S^{\circ}$. Then by definition of the interior there exists r > 0 such that $B(z, r) \subset S$. In particular, this open ball contains the open square centered at z with side-length $\sqrt{2}r$. Hence any covering of S by open rectangles must necessarily cover this open square and therefore have total area at least $2r^2$, contradicting S being a zero set.
- 2. (a) (\Rightarrow) : Suppose f is continuous at $z \in \mathbb{R}^2$. Let $\epsilon > 0$, then there exists $\delta > 0$ such that whenever $w \in B(z, \delta), |f(w) f(z)| < \frac{\epsilon}{2}$. Consequently, for any $w, w' \in B(z, \delta)$ we have

$$|f(w) - f(w')| \le |f(w) - f(w')| \le |f(w) - f(z)| + |f(z) - f(w')| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Taking the supremum over w and the infimum over w' yields

$$\sup(f(B(z,\delta))) - \inf(f(B(z,\delta))) \le \epsilon$$

This clearly holds for $r \leq \delta$ as well and hence $\operatorname{osc}_z(f) \leq \epsilon$. As $\epsilon > 0$ was arbitrary, we must have $\operatorname{osc}_z(f) = 0$.

 (\Leftarrow) : Suppose $\operatorname{osc}_z(f) = 0$. Let $\epsilon > 0$. Take r > 0 small enough so that

$$\sup(f(B(z,r))) - \inf(f(B(z,r))) < \epsilon.$$

Then for $\delta = r$, if $w \in B(z, \delta)$ we have

$$|f(w) - f(z)| \le \sup(f(B(z,r))) - \inf(f(B(z,r))) < \epsilon.$$

Thus f is continuous at z.

(b) (\Rightarrow) : Suppose χ_S is discontinuous at z. If $z \notin \partial S$, then there exists r > 0 such that either $B(z,r) \cap S = \emptyset$ or $B(z,r) \cap S^c = \emptyset$. In the former case, $\chi_S(w) = 0$ for all $w \in B(z,r)$ which imply $\operatorname{osc}_z(\chi_S) = 0$. In the latter case, $\chi_S(w) = 1$ for all $w \in B(z,r)$ which again implies $\operatorname{osc}_z(\chi_S) = 0$. So in either case, by part (a), we contradict χ_S being discontinuous at z.

 (\Leftarrow) : Suppose $z \in \partial S$. Then for every r > 0 we have $B(z,r) \cap S \neq \emptyset$ and $B(z,r) \cap S^c \neq \emptyset$. So leting $w \in B(z,r) \cap S$ and $w' \in B(z,r) \cap S^c$ we have

$$\sup(\chi_S(B(z,r))) - \inf(\chi_S(B(z,r))) \ge \chi_S(w) - \chi_S(w') = 1 - 0 = 1.$$

Since this holds for each r > 0, we have $\operatorname{osc}_z(\chi_S) \ge 1$. (In fact, given the bounds on χ_S , it easily follows that $\operatorname{osc}_z(\chi_S) = 1$.)

3. Denote h = |f - g|. Then h is Riemann integrable and

$$\left|\int_{R} f - \int_{R} g\right| \le \int_{R} h$$

So it suffices to show $\int_R h = 0$. Observe that

$$P = \{ z \in R \colon h(z) > 0 \}.$$

For each $k \in \mathbb{N}$, define

$$P_k := \left\{ z \in R \colon h(z) \ge \frac{1}{k} \right\},\,$$

So that $P = \bigcup_{k \in \mathbb{N}} P_k$. Fix $k \in \mathbb{N}$. We claim $P_k \subset D_k$ where

$$D_k := \left\{ z \in R : \operatorname{osc}_z(h) \ge \frac{1}{k} \right\}.$$

Indeed, by Exercise 1 we have $P^{\circ} = \emptyset$. Therefore, for every every $z \in P_k \subset P$, $B(z,r) \cap P^c \neq \emptyset$ for every r > 0. In particular, for every r > 0 there exists $w \in B(z,r) \cap P^c$ and so

$$\sup(h(B(z,r))) - \inf(h(B(z,r))) \ge h(z) - h(w) \ge \frac{1}{k} - 0 = \frac{1}{k}$$

Thus $\operatorname{osc}_z(h) \geq \frac{1}{k}$ and the claim follows. Observe that the claim implies $D_k^c \subset P_k^c$ and so for every $z \in D_k^c$ we have $h(z) < \frac{1}{k}$.

Let $\epsilon > 0$. Since h is Riemann integrable, D_k is necessarily a zero set which we can therefore cover with open rectangles $\{S_\ell\}_\ell$ satisfying $\sum |S_\ell| < \epsilon$. For every $z \in D_k^c$ there exists an open neighborhood W_z such that

$$|h(w) - h(w')| < \frac{1}{k}$$

for all $w, w' \in W_z$. Note that for any $w \in W_z$ we have

$$h(w) = h(w) - h(z) + h(z) \le |h(w) - h(z)| + h(z) < \frac{1}{k} + \frac{1}{k} = \frac{2}{k}$$

The open rectangles S_{ℓ} along with the open neighborhoods W_z form an open cover for the compact set R. Hence there is a positive Lebesgue number $\lambda > 0$ associated with this open cover.

Let G be a grid on R with $mesh(G) < \lambda$. Then

$$\int_{R} h \le U(h,G) = \sum M_{ij} |R_{ij}|.$$

Now, since the diameter of R_{ij} is less than mesh $(G) < \lambda$, each R_{ij} is contained in either some S_{ℓ} or some W_z . Splitting the above sum into two sums according to this have

$$\int_{R} h \le M \sum |S_{\ell}| + \sum_{R_{ij} \subset W_z} \frac{2}{k} |R_{ij}| \le M\epsilon + \frac{2}{k} |R|,$$

where $M = \sup(h(R))$ (which is finite because h is Riemann integrable and therefore bounded). Since $\epsilon > 0$ was arbitrary, we have $\int_R h \leq \frac{2}{k} |R|$ and letting k tend to infinity we have $\int_R h \leq 0$. Since $h \geq 0$, we immediately have the other inequality and so $\int_R h = 0$.

4. (a) We claim $\partial(S^{\circ}), \partial(\overline{S}) \subset \partial S$. Indeed, the inclusions $S^{\circ} \subset S \subset \overline{S}$ imply $\overline{S^{\circ}} \subset \overline{S}$ and $S^{\circ} \subset (\overline{S})^{\circ}$. Hence

$$\partial(S^{\circ}) = \overline{S^{\circ}} \setminus (S^{\circ})^{\circ} = \overline{S^{\circ}} \setminus S^{\circ} \subset \overline{S} \setminus S^{\circ} = \partial S,$$

and

$$\partial(\overline{S}) = \overline{\overline{S}} \setminus (\overline{S})^{\circ} = \overline{S} \setminus (\overline{S})^{\circ} \subset \overline{S} \setminus S^{\circ} = \partial S.$$

Thus, since S is Riemann measurable we must have ∂S is a zero set and therefore the boundaries of S° and \overline{S} are zero sets and hence Riemann measurable.

(b) These sets being Riemann measurable with the same area is equivalent to $f_1 := \chi_{S^\circ}$ and $f_2 := \chi_{\overline{S}}$ being Riemann integrable with $\int f_1 = |S^\circ| = |\overline{S}| = \int f_2$. Denote this common value by A. Consequently, for $\epsilon > 0$ there exists $\delta_1, \delta_2 > 0$ such that whenever G is a grid on R with $\operatorname{mesh}(G) < \delta_1$ we have

$$L(f_1, G) \ge A - \epsilon,$$

and whenever $\operatorname{mesh}(G) < \delta_2$ we have

$$U(f_2, G) \le A + \epsilon.$$

Let $\delta = \min{\{\delta_1, \delta_2\}} > 0$ and let G be a grid on R with $\operatorname{mesh}(G) < \delta$. Then using $f_1 \leq \chi_S \leq f_2$ we have

$$U(\chi_S, G) \le U(f_1, G) \le A + \epsilon \le L(f_1, G) + 2\epsilon \le L(\chi_S, G) + 2\epsilon \le U(\chi_S, G) + 2\epsilon.$$

Letting ϵ tend to zero yields equalities in the above and hence χ_S is Riemann integrable with $|S| = \int \chi_S = A = |S^\circ| = |\overline{S}|$.

- (c) Note that $S = \mathbb{Q}^2 \cap [0, 1]^2$ is countable and dense in $[0, 1]^2$. The former implies it is a zero set and so by Exercise 1, $S^\circ = \emptyset$. The latter implies $\overline{S} = [0, 1]^2$. Hence $|S^\circ| = 0 \neq 1 = |\overline{S}|$. Moreover, we have $\partial S = \overline{S} \setminus S^\circ = [0, 1]^2$ which is **not** a zero set. Hence S is not Riemann measurable. \Box
- 5. Consider an arbitrary parallelogram P with base length b and height h. We can place such a parallelogram in \mathbb{R}^2 with its base on the x-axis and bottom left vertex at the origin. Its vertices are then on the coordinates (0,0), (b,0), (x,h), and (x+b,h) for some $x \in \mathbb{R}$. Observe that P is the image of the rectangle $[0,b] \times [0,h]$ under the linear transformation given by

$$T = \left[\begin{array}{cc} 1 & \frac{x}{h} \\ 0 & 1 \end{array} \right],$$

since the T sends the vectors (b,0) and (0,h) to (b,0) and (x,h). Since det(T) = 1, it follows that $|P| = |[0,b] \times [0,h]| = bh$.