
Math 105 Homework 5 Solutions 2/23/2018

Exercises:

1. Let f : R3 → R2 be of class C1. Assume that f(3,−1, 2) = 0 and

(Df)(3,−1,2) =

[
1 2 1
1 −1 1

]
.

(a) Show that there is an open neighborhood U ⊂ R of 3 and a function g : U → R2 of class C1 such
that g(3) = (−1, 2) and f(x, g(x)) = 0 for all x ∈ U .

(b) Determine (Dg)3.

2. Let U ⊂ Rm be open and let f : U → Rm be of class C1. Show that if (Df)x is invertible for all x ∈ U ,
then f(U) is open.

3. Let G ⊂M(n, n) denote the set of invertible n× n matrices, with metric given by the operator norm.

(a) Show that G is open.

[Hint: use the determinant but take care with the norms.]

(b) Show that G contains 1, is closed under multiplication, and closed under the map Inv(A) := A−1;
that is, show G is a group.

[Note: this group is called the general linear group and is typically denoted GLn(R)]

(c) Show that Inv: G→ G is a homeomorphism.

(d) Show that Inv: G→ G is a C1 diffeomorphism with

(DInv)A(X) = −A−1XA−1 A ∈ G, X ∈M(n, n).

[Note: this should remind you of the formula d
dx

(
1
x

)
= − 1

x2 .]

4. Let f : R→ R be a continuous function. Show that its graph

G := {(x, f(x)) : x ∈ R} ⊂ R2

is a zero set.

———————————————————————————————————————————–

Solutions:

1. (a) For p ∈ R3, write p = (x, y) for x ∈ R and y ∈ R2. Using this notation, the given value for
(Df)(3,−1,2) implies (

∂fi(3,−1, 2)

∂yj

)
1≤i,j≤2

=

[
2 1
−1 1

]
,

where we are invoking the theorem from class that tells us the entries of the total derivative are
given by partial derivatives. The determinant of this matrix is 2·1−1·(−1) = 3 6= 0, so this matrix
is non-zero. Hence the Implicit Function Theorem implies the existance of this neighborhood B
and C1 function g.

(b) Write

(Dg)3 =

[
a
b

]
.

Using the chain rule, we have (since f(x, g(x)) = 0 is a constant function in x)

0 = (Df(x, g(x)))3 = (Df)(3,−1,2) ◦
[

1
(Dg)3

]
=

[
1 2 1
1 −1 1

] 1
a
b

 =

[
1 + 2a+ b
1− a+ b

]
.
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This corresponds to the system of equations

1 + 2a+ b = 0

1− a+ b = 0

which has the solution (a, b) = (0,−1). Thus (Dg)3 =

[
0
−1

]
. �

2. Let y ∈ f(U) so that y = f(x) for some x ∈ U . Since (Df)x is invertible, there is an open neighborhood
Ux ⊂ U of x on which f is a C1 diffeomorphism. In particular, on f(Ux) the function f−1 is well defined
and continuous. But then f(Ux) is the preimage of the open set Ux under the continuous function f−1;
that is, f(Ux) is open. Since y = f(x) ∈ f(Ux), there exists a radius r > 0 such that the open ball
B(y, r) ⊂ f(Ux) ⊂ f(U). Since y ∈ f(U) was arbitrary, we see that f(U) is open. �

3. (a) Since the determinant of a matrix is just a polynomial in its entries, it is continuous as a map

from M(n, n) to R when the matrices are given the Euclidean norm via M(n, n) ∼= Rn2

. Let’s
denote this norm by | · |. However, M(n, n) is a finite-dimensional vector space, so all norms
are equivalent. In particular, | · | is equivalent to the operator norm ‖ · ‖. Therefore there exists
a constant c > 0 such that |A| ≤ c‖A‖ for all A ∈ M(n, n). Now, since the determinant is
continuous with respect to | · |, given ε > 0 we can find δ > 0 such that if |A−B| < δ then

|det(A)− det(B)| < ε.

But then if we require ‖A−B‖ < δ
c we have

|A−B| ≤ c‖A−B‖ < c
δ

c
= δ,

and so |det(A) − det(B)| < ε is this case as well. That is, the determinant is continuous on
M(n, n) with the metric structure is determined by the operator norm. Then, since R \ {0} is an
open set, we have G = det−1(R \ {0}) is an open set. �

(b) The identity matrix 1 is its own inverse, so 1 ∈ G. Given A,B ∈ G we have (AB)−1 = B−1A−1,
so AB ∈ G and G is closed under multiplication. Finally, if A ∈ G, then (A−1)−1 = A so A−1 ∈ G
and G is closed under taking inverses. �

(c) By Cramer’s rule, the entries of Inv(A) are given in terms of polynomials divided by det(A).
Since these functions are continuous (and det(A) 6= 0 on G), it follows that Inv is continuous
when M(n, n) is given the Euclidean norm as in part (a). However, as we saw in part (a), the
Euclidean norm is equivalent to the operator norm and hence Inv is continuous with respect to the
operator norm. Indeed, as before let | · | denote the Euclidean norm. Then there exists constants
c1, c2 > 0 such that c1‖A‖ ≤ |A| ≤ c2‖A‖. Given ε > 0, we can find δ > 0 so that if |A− B| < δ
then

|Inv(A)− Inv(B)| < c1ε.

But then if we require ‖A−B‖ < δ
c2

we have

|A−B| < c2‖A−B‖ < δ,

so that

‖Inv(A)− Inv(B)‖ ≤ 1

c1
|Inv(A)− Inv(B)| < 1

c1
c1ε = ε.

Thus Inv is continuous with respect to the operator norm. Since it is its own inverse, we have in
fact shown that it is a homeomorphism. �

Alternate Proof: We can actually avoid using Cramer’s rule and the finite dimensionality using
the following proof. Fixing A ∈ G, we will show Inv is continuous at A. Given B ∈ G we observe
that

A−1 −B−1 = A−1(B −A)B−1.
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Since A is fixed and B − A can be made small in operator norm, it suffices to show that ‖B−1‖
can be bounded in terms of A. For this we will use a trick involving the geometric series. For
now, let us assume ‖A−B‖ < 1

‖A−1‖ . Then we observe that

B = (B −A) +A = A(A−1(B −A) + 1) = A(1−A−1(A−B)).

We claim that 1−A−1(A−B) is invertible. Indeed, we have ‖A−1(A−B)‖ ≤ ‖A−1‖‖A−B‖ < 1
and hence the following series converges to an operator:

∞∑
k=0

[A−1(A−B)]k.

We compute

(1−A−1(A−B))

∞∑
k=0

[A−1(A−B)]k =

∞∑
k=0

[A−1(A−B)]k −
∞∑
k=0

[A−1(A−B)]k+1 = 1.

Thus (1−A−1(A−B)) is invertible with inverse
∑

[A−1(A−B)]k. Consequently, we have

B−1 = (1−A−1(A−B))−1A−1 =

∞∑
k=0

[A−1(A−B)]kA−1.

Now, using this we can estimate

‖B−1‖ ≤ ‖A−1‖
∞∑
k=0

[‖A−1‖‖A−B‖]k.

If we require ‖A−B‖ < 1
2‖A−1‖ , then the sum in the above expression will be bounded by 2 (using

the geometric series for 1
2 ), so that ‖B−1‖ ≤ 2‖A−1‖.

Now, given ε > 0 let

δ = min

{
ε

2‖A−1‖2
,

1

2‖A−1‖

}
.

Then if ‖A−B‖ < δ we have

‖A−1 −B−1‖ = ‖A−1(B −A)B−1‖ ≤ ‖A−1‖‖B −A‖2‖A−1‖ < ε.

Thus Inv is continuous at A. Since A ∈ G was arbitrary, we have that the map is continuous on
all of G. Finally, since Inv is its own inverse we see that it is a homemorphism. �

(d) That Inv is a bijection is clear. Let us verify the formula for the derivative by computing the
Taylor remainder:

R(X) = Inv(A+X)− Inv(A)− (−A−1XA−1)

= (A+X)−1 −A−1 +A−1XA−1

= (A+X)−1(A− (A+X))A−1 +A−1XA−1

= −(A+X)−1XA−1 +A−1XA−1

= [A−1 − (A+X)−1]XA−1.

Thus
‖R(X)‖
‖X‖

≤ ‖A−1 − (A+X)−1‖‖A−1‖,

which tends to zero as X does by part (c). Thus Inv is differentiable on G with the claimed
derivative.
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Let us now check that it is C1. We have for A,B ∈ G and X ∈M(n, n)

‖(DInv)A(X)− (DInv)B(X)‖
‖X‖

=
‖A−1XA−1 −B−1XA−1 +B−1XA−1 −B−1XB−1‖

‖X‖
≤ ‖A−1 −B−1‖‖A−1‖+ ‖B−1‖‖A−1 −B−1‖.

Using part (c), this quantity tends to zero as B → A, independent of X. Hence ‖(DInv)A −
(DInv)B‖ tends to zero as B → A. Thus Inv is C1.

Finally, since Inv is its own inverse, the above shows that it is C1 diffeomorphism.

[Note that we could also apply the Inverse Function Theorem to finish this proof. At each A ∈ G,
(DInv)A is invertible with inverse X 7→ AXA, and so locally Inv is a C1 diffeomorphism. But
since this holds for all A ∈ G, we have that Inv is globally (i.e. on all of G) a C1 diffeomorphism.]

4. For n ∈ Z, let
Gn := {(x, f(x)) : n ≤ x ≤ n+ 1}.

Since G is the (countable) union of Gn, it suffices to show that each Gn is a zero set. Fix n ∈ Z and let
ε > 0. Since [n, n+1] is a compact set, f is uniformly continuous on this interval. So there exists δ > 0
such that if x, y ∈ [n, n+ 1] satisfy |x− y| < δ then |f(x)− f(y)| < ε. Replacing δ with 1 if necessary,
we assume δ ≤ 1. N ∈ N be such that Nδ ≤ 1 < (N + 1)δ, and note that (N + 1)δ = Nδ + δ ≤ 2 by
our assumption on δ. Now, define open rectangles

Si = (n+ (i− 1)δ, n+ (i+ 1)δ)× (f(n+ iδ)− ε, f(n+ iδ) + ε) i = 0, 1, 2, . . . , N.

We claim that

Gn ⊂
N⋃
i=0

Si.

Indeed, by the choice of N we have

[n, n+ 1] ⊂
N⋃
i=0

(n+ (i− 1)δ, n+ (i+ 1)δ).

Then if x ∈ (n+ (i− 1)δ, n+ (i+ 1)δ) we have |x− (n+ iδ)| < δ so that |f(x)− f(n+ iδ)| < ε, which
implies f(x) ∈ (f(n+ iδ)− ε, f(n+ iδ) + ε). That is, (x, f(x)) ∈ Si and hence the claim follows.

Now, observe that
N∑
i=0

|Si| =
N∑
i=0

2δ2ε = 4(N + 1)δε ≤ 8ε

Since ε > 0 is arbitrary, we have that Gn is a zero set. �
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