
Math 105 Homework 4 Solutions 2/7/2018

Exercises:

1. Consider f : R3 → R2 defined by

f(x1, x2, x3) = (x1x2 + x2x3, x
3
3).

For p ∈ R3, determine the matrix representation for (D2f)p with respect to the ordered basis

{(e1, e1), (e1, e2), (e1, e3), (e2, e1), (e2, e2), (e2, e3), (e3, e1), (e3, e2), (e3, e3)}

for R32 . Then prove that the corresponding Taylor remainder for Df at p is sublinear.

[Note: you already computed (Df)p on Homework 2, so you do not need to rederive this.]

2. Let β ∈ Lk(Rn,Rm) be a k-linear map. The symmetrization of β is the k-linear map symm(β) ∈
Lk(Rn,Rm) defined by

symm(β)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

β(vσ(1), . . . , vσ(k)),

where Sk is the permutation group on k elements.

(a) Show that symm(β) is indeed symmetric.

(b) Show that β is symmetric if and only if β = symm(β).

3. Let β ∈ Lk(Rn,Rm) be a k-linear map. Define f : Rn → Rm by f(x) = β(x, . . . , x).

(a) Show that for p, v ∈ Rn

(Df)p(v) = β(v, p, . . . , p) + β(p, v, p, . . . , p) + · · ·+ β(p, . . . , p, v).

(b) Show that for p, v1, v2 ∈ Rn

(D2f)p(v1, w2) =
∑

1≤i<j≤k

∑
σ∈S2

β(p, . . . , p︸ ︷︷ ︸
i−1

, vσ(1), p, . . . , p︸ ︷︷ ︸
j−i−1

, vσ(2), p, . . . , p).

(c) Further assume that β is symmetric. For r ≥ 0, show that for p, v1, . . . , vr ∈ Rn

(Drf)p(v1, . . . , vr) =


k!

(k − r)!
β(v1, . . . , vr, p, . . . , p) if r ≤ k

0 if r > k
.

Note that this implies (Dkf)p = k!symm(β).

[Hint: proceed by induction and note that the base case r = 0 is trivial.]

4. Consider f : R2 → R defined by

f(x, y) =


xy(x2 − y2)

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

Show that the second partial derivatives exists everywhere, but that
∂2f(0, 0)

∂x∂y
6= ∂2f(0, 0)

∂y∂x
.

5. Let f : U → Rm be r-times differentiable at p ∈ U with r ≥ 3. Use induction to show that (Drf)p is
symmetric: first show for v1, . . . , vr ∈ Rn that (Drf)p is symmetric with respect to permutations of
v2, . . . , vr, and then use the fact that r > 2 to show that it is also invariant under permutations of v1
and v2.
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———————————————————————————————————————————–

Solutions:

1. By a result from class, we know the entries of (D2f)p are of the form

∂2fk(p)

∂xi∂xj
,

where k determines the row and (i, j) determines the column according to our ordered basis. For

example, ∂
2f1(p)
∂x2∂x3

will appear in the 1st row and, since (e2, e3) is the sixth basis vector, the 6th column.
So we have

(D2f)p =

[
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 6p3

]
Now, the Taylor remainder at p is given by

R(v) = (Df)p+v − (Df)p − (D2f)p(v, ·),

where we are thinking of (D2f)p ∈ L2(R3,R2) so that (D2f)p(v, ·) ∈ L(R3,R2). Also, observe that
R(v) ∈ L(R3,R2). Thus, to check sublinearity, we must show:

lim
v→0

‖R(v)‖
|v|

= 0.

By definition of the operator norm, it suffices to show for any w ∈ R3 \ {0} that

lim
v→0

|(R(v))(w)|
|v||w|

= 0.

Using Exercise 3 from Homework 2, we first compute

(Df)p+v − (Df)p =

[
p2 + v2 (p1 + v1) + (p3 + v3) p2 + v2

0 0 3(p3 + v3)2

]
−
[
p2 p1 + p3 p2
0 0 3p23

]
=

[
v2 v1 + v3 v2
0 0 6p3v3 + 3v23

]
.

Using this, our formula for (D2f )p, and writing (v, w) =
3∑

i,j=1

viwj(ei, ej) we can compute

(R(v))(w) =

[
v2 v1 + v3 v2
0 0 6p3v3 + 3v23

]
·

 w1

w2

w3

− (D2f)p(v, w)

=

(
v2w1 + (v1 + v3)w2 + v2w3

6p3v3w3 + 3v23w3

)
−
(
v1w2 + v2w1 + v2w3 + v3w2

6p3v3w3

)
=

(
0

3v23w3

)
.

Thus
|(R(v))(w)|
|v||w|

=
|3v23w3|
|v||w|

≤ 3|v|2|w|
|v||w|

= 3|v|,

which clearly tends to zero as v does. Thus R(v) is sublinear. �

2. (a) Fix π ∈ Sk and v1, . . . , vk ∈ Rn, and write wj := vπ(j) for j = 1, . . . , k. Observe that

Sk 3 σ 7→ σ ◦ π ∈ Sk
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is a bijection since π is invertible (Sk is a group after all). Hence by the change of index given by
the above map, we have

symm(β)(vπ(1), . . . , vπ(k)) = symm(β)(w1, . . . , wk)

=
1

k!

∑
σ∈Sk

β(wσ(1), . . . , wσ(k))

=
1

k!

∑
σ∈Sk

β(vπ(σ(1)), . . . , vπ(σ(k)))

=
1

k!

∑
σ∈Sk

β(vσ(1), . . . , vσ(k)) = symm(β)(v1, . . . , vk).

That is, symm(β) is symmetric. �

(b) If β = symm(β), then part (a) shows that it is symmetric. On the other hand, if β is already
symmetric, then we have for v1, . . . , vk ∈ Rn

symm(β)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

β(vσ(1), . . . , vσ(k)) =
1

k!

∑
σ∈Sk

β(v1, . . . , vk) = β(v1, . . . , vk),

where we have used |Sk| = k!. �

3. (a) We will show the Taylor remainder is sublinear. Indeed, expanding f(p + v) in each entry of β,
f(p + v) − f(p) is the sum of β evaluated in v’s and p’s where each term has v in at least one
entry. Then R(v) is the sum of β evaluated in v’s and p’s where each term has v in at least two
entries. Consequently,

|R(v)| ≤ ‖β‖
k∑
i=2

(
k

i

)
|v|i|p|k−i,

where ‖β‖ is the norm of β as a k-linear map. Since each term in the above estimate as at least
two factors of |v|, we see that R is indeed sublinear. �

(b) Again, we will show the Taylor remainder is sublinear. Using the formula from part (a), we see
that (Df)p+v1(v2) − (Df)p(v2) (after expanding p + v1 in the etries they appear in in β) is the
sum of β evaluated in v1’s, v2’s, and p’s, where v2 appears exactly once, and v1 appears at least
once. Then R(v1, v2) is the sum of β evaluated in v1’s, v2’s, and p’s, where v2 appears exactly
once, and v1 appears at least twice. Consequently,

|R(v1, v2)| ≤ ‖β‖
k−1∑
i=2

k|v2|
(
k − 1

i

)
|v1|i|p|k−1−i,

since each term has at least two factors of |v1|, we have

lim
v1→0

|R(v1, v2)|
|v1||v2|

= 0,

which implies

lim
v1→0

‖R(v1, ·)‖
|v1|

,

where we think of R(v1, ·) ∈ L(Rn,Rm). Hence R is sublinear. �

(c) Note that the case r = 0 is simply saying f(p) = β(p, . . . , p), which holds. Now suppose the
formula has been established for r < k (note the strict inequality). Then for vr+1 ∈ Rn we have

[(Drf)p+v1 − (Drf)p](v2, . . . , vr+1)

=
k!

(k − r)!
[β(v2, . . . , vr+1, p+ v1, . . . , p+ v1)− β(v2, . . . , vr+1, p, . . . , p)]

=
k!

(k − r)!

k−r∑
i=1

(
k − r
i

)
β(v1, . . . , v1︸ ︷︷ ︸

i times

, v2, . . . , vr+1, p, . . . , p),
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where we have used the symmetry of β. Note that the term corresponding to i = 1 in the above

sum is exactly the claimed formula for r + 1 since
(
k−r
1

)
= (k−r)!

(k−r−1)! . Hence the Taylor remainder

is given by

R(v1, . . . , vr+1) =
k!

(k − r)!

k−r∑
i=2

(
k − r
i

)
β(v1, . . . , v1︸ ︷︷ ︸

i times

, v2, . . . , vr+1, p, . . . , p)

(i.e. the sum starts at i = 2). Since each term has v1 appearing at least twice, we have

lim
v1→0

|R(v1, . . . , vr+1|
|v1| · · · |vr+1|

= 0

which implies

lim
v1→0

‖R(v1, ·, . . . , ·)‖
|v1|

= 0,

when we think of R(v1, ·, . . . , ·) ∈ Lr(Rn,Rm). Thus the claimed formula holds for r + 1, and so
by induction we have proven the formula for 0 ≤ r ≤ k.

Finally, to see the formula for r > k, note that (Dk)p = k!symm(β) for all p ∈ Rn. Hence

R(v) = (Dkf)p+v − (Dkf)p − 0 = 0,

which is clearly sublinear. Therefore (Dk+1f)p = (D(Dkf))p = 0. Since all derivatives of the
zero map are the zero map, we obtain (Drf)p = 0 for all r ≥ k + 1. �

4. For (x, y) 6= (0, 0), the following formulas follow from one-dimensional differentiation rules:

∂2f(x, y)

∂x2
= −4xy3(x2 − 3y2)

(x2 + y2)3
∂2f(x, y)

∂x∂y
=
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
∂2f(x, y)

∂y2
=

4x3y(y2 − 3x2)

(x2 + y2)3

We take a little bit more care with computing the second partials at (0, 0). First note that the partial
derivatives are:

∂f(x, y)

∂x
=


y(x4 + 4x2y2 − y4)

(x2 + y2)2
if y 6= 0

0 if y = 0

∂f(x, y)

∂y
=


x(x4 + 4x2y2 − y4)

(x2 + y2)2
if x 6= 0

0 if x = 0

.

Then we have

∂2f(0, 0)

∂x∂y
= lim
h→0

∂f(h, 0)

∂y
− ∂f(0, 0)

∂y

h
= lim
h→0

h− 0

h
= 1,

but

∂2f(0, 0)

∂y∂x
= lim
h→0

∂f(0, h)

∂x
− ∂f(0, 0)

∂x
h

= lim
h→0

−h− 0

h
= −1.

Thus the mixed second partials of f at (0, 0) do not agree.

We remark that this implies (D2f)(0,0) cannot exist, since it would necessarily imply (as seen in class)
that the mixed second partials are equal. �
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5. The base case of r = 2 was done in class. Suppose we have shown (Dr−1f)p is symmetric. Then, if
σ ∈ Sr is such that σ(1) = 1, we have

(Drf)p(vσ(1), . . . , vσ(r)) = (Drf)p(v1, vσ(2), . . . vσ(r))

= ((D(Dr−1f))p(v1))(vσ(2), . . . , vσ(r))

=

(
lim
t→0

(Dr−1f)p+tv1 − (Dr−1f)p
t

)
(vσ(2), . . . , vσ(r))

= lim
t→0

(Dr−1f)p+tv1(vσ(2), . . . , vσ(r))− (Dr−1f)p(vσ(2), . . . , vσ(r))

t

= lim
t→0

(Dr−1f)p+tv1(v2, . . . , vr)− (Dr−1f)p(v2, . . . , vr)

t
= (Drf)p(v1, . . . , vr),

where in the second to last equality we have used the induction hypothesis.

Next, consider g : U → Lr−2(Rn,Rm) defined by g(p) = (Dr−2f)p. (Note that this is well-defined since
r ≥ 2). Then

(D2g)p(v1, v2) = (Drf)p(v1, v2, ·, . . . , ·) ∈ Lr−2(Rn,Rm).

By our base case, we have

(Drf)p(v2, v1, ·, . . . , ·) = (D2g)p(v2, v1) = (D2g)p(v1, v2) = (Drf)p(v1, v2, ·, . . . , ·),

thus (Drf)p is symmetric with respect to permutations of v1, v2.

Combining the two above arguments, to complete the induction argument it suffices to show that any
σ ∈ Sk can be written as a product of permutations that fix 1 and permutations that only act on 1
and 2. But for σ ∈ Sr, if σ(1) = k then it it is easy to check that

σ = (1, 2)(2, k)(1, 2)(1, k)σ

(where (i, j) represents that the transposition switching i and j), and observe that (1, k)σ and (2, k)
fix 1. Thus, by induction if follows that (Drf)p is symmetric. �

5 c©Brent Nelson 2018


