Exercises:

1. Consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}+x_{2} x_{3}, x_{3}^{3}\right)
$$

For $p \in \mathbb{R}^{3}$, determine the matrix representation for $\left(D^{2} f\right)_{p}$ with respect to the ordered basis

$$
\left\{\left(e_{1}, e_{1}\right),\left(e_{1}, e_{2}\right),\left(e_{1}, e_{3}\right),\left(e_{2}, e_{1}\right),\left(e_{2}, e_{2}\right),\left(e_{2}, e_{3}\right),\left(e_{3}, e_{1}\right),\left(e_{3}, e_{2}\right),\left(e_{3}, e_{3}\right)\right\}
$$

for $\mathbb{R}^{3^{2}}$. Then prove that the corresponding Taylor remainder for $D f$ at p is sublinear.
[Note: you already computed $(D f)_{p}$ on Homework 2, so you do not need to rederive this.]
2. Let $\beta \in \mathcal{L}^{k}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ be a k-linear map. The symmetrization of β is the k-linear map $\operatorname{symm}(\beta) \in$ $\mathcal{L}^{k}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ defined by

$$
\operatorname{symm}(\beta)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \beta\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right),
$$

where S_{k} is the permutation group on k elements.
(a) Show that $\operatorname{symm}(\beta)$ is indeed symmetric.
(b) Show that β is symmetric if and only if $\beta=\operatorname{symm}(\beta)$.
3. Let $\beta \in \mathcal{L}^{k}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ be a k-linear map. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $f(x)=\beta(x, \ldots, x)$.
(a) Show that for $p, v \in \mathbb{R}^{n}$

$$
(D f)_{p}(v)=\beta(v, p, \ldots, p)+\beta(p, v, p, \ldots, p)+\cdots+\beta(p, \ldots, p, v)
$$

(b) Show that for $p, v_{1}, v_{2} \in \mathbb{R}^{n}$

$$
\left(D^{2} f\right)_{p}\left(v_{1}, w_{2}\right)=\sum_{1 \leq i<j \leq k} \sum_{\sigma \in S_{2}} \beta(\underbrace{p, \ldots, p}_{i-1}, v_{\sigma(1)}, \underbrace{p, \ldots, p}_{j-i-1}, v_{\sigma(2)}, p, \ldots, p) .
$$

(c) Further assume that β is symmetric. For $r \geq 0$, show that for $p, v_{1}, \ldots, v_{r} \in \mathbb{R}^{n}$

$$
\left(D^{r} f\right)_{p}\left(v_{1}, \ldots, v_{r}\right)= \begin{cases}\frac{k!}{(k-r)!} \beta\left(v_{1}, \ldots, v_{r}, p, \ldots, p\right) & \text { if } r \leq k \\ 0 & \text { if } r>k\end{cases}
$$

Note that this implies $\left(D^{k} f\right)_{p}=k!\operatorname{symm}(\beta)$.
[Hint: proceed by induction and note that the base case $r=0$ is trivial.]
4. Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that the second partial derivatives exists everywhere, but that $\frac{\partial^{2} f(0,0)}{\partial x \partial y} \neq \frac{\partial^{2} f(0,0)}{\partial y \partial x}$.
5. Let $f: U \rightarrow \mathbb{R}^{m}$ be r-times differentiable at $p \in U$ with $r \geq 3$. Use induction to show that $\left(D^{r} f\right)_{p}$ is symmetric: first show for $v_{1}, \ldots, v_{r} \in \mathbb{R}^{n}$ that $\left(D^{r} f\right)_{p}$ is symmetric with respect to permutations of v_{2}, \ldots, v_{r}, and then use the fact that $r>2$ to show that it is also invariant under permutations of v_{1} and v_{2}.

Solutions:

1. By a result from class, we know the entries of $\left(D^{2} f\right)_{p}$ are of the form

$$
\frac{\partial^{2} f_{k}(p)}{\partial x_{i} \partial x_{j}}
$$

where k determines the row and (i, j) determines the column according to our ordered basis. For example, $\frac{\partial^{2} f_{1}(p)}{\partial x_{2} \partial x_{3}}$ will appear in the 1 st row and, since $\left(e_{2}, e_{3}\right)$ is the sixth basis vector, the $6 t h$ column. So we have

$$
\left(D^{2} f\right)_{p}=\left[\begin{array}{ccccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 p_{3}
\end{array}\right]
$$

Now, the Taylor remainder at p is given by

$$
R(v)=(D f)_{p+v}-(D f)_{p}-\left(D^{2} f\right)_{p}(v, \cdot)
$$

where we are thinking of $\left(D^{2} f\right)_{p} \in \mathcal{L}^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ so that $\left(D^{2} f\right)_{p}(v, \cdot) \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$. Also, observe that $R(v) \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$. Thus, to check sublinearity, we must show:

$$
\lim _{v \rightarrow 0} \frac{\|R(v)\|}{|v|}=0
$$

By definition of the operator norm, it suffices to show for any $w \in \mathbb{R}^{3} \backslash\{0\}$ that

$$
\lim _{v \rightarrow 0} \frac{|(R(v))(w)|}{|v||w|}=0
$$

Using Exercise 3 from Homework 2, we first compute

$$
\begin{aligned}
(D f)_{p+v}-(D f)_{p} & =\left[\begin{array}{ccc}
p_{2}+v_{2} & \left(p_{1}+v_{1}\right)+\left(p_{3}+v_{3}\right) & p_{2}+v_{2} \\
0 & 0 & 3\left(p_{3}+v_{3}\right)^{2}
\end{array}\right]-\left[\begin{array}{ccc}
p_{2} & p_{1}+p_{3} & p_{2} \\
0 & 0 & 3 p_{3}^{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
v_{2} & v_{1}+v_{3} & v_{2} \\
0 & 0 & 6 p_{3} v_{3}+3 v_{3}^{2}
\end{array}\right] .
\end{aligned}
$$

Using this, our formula for $\left(D 2^{f}\right)_{p}$, and writing $(v, w)=\sum_{i, j=1}^{3} v_{i} w_{j}\left(e_{i}, e_{j}\right)$ we can compute

$$
\begin{aligned}
(R(v))(w) & =\left[\begin{array}{ccc}
v_{2} & v_{1}+v_{3} & v_{2} \\
0 & 0 & 6 p_{3} v_{3}+3 v_{3}^{2}
\end{array}\right] \cdot\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)-\left(D^{2} f\right)_{p}(v, w) \\
& =\binom{v_{2} w_{1}+\left(v_{1}+v_{3}\right) w_{2}+v_{2} w_{3}}{6 p_{3} v_{3} w_{3}+3 v_{3}^{2} w_{3}}-\binom{v_{1} w_{2}+v_{2} w_{1}+v_{2} w_{3}+v_{3} w_{2}}{6 p_{3} v_{3} w_{3}} \\
& =\binom{0}{3 v_{3}^{2} w_{3}} .
\end{aligned}
$$

Thus

$$
\frac{|(R(v))(w)|}{|v||w|}=\frac{\left|3 v_{3}^{2} w_{3}\right|}{|v||w|} \leq \frac{3|v|^{2}|w|}{|v||w|}=3|v|,
$$

which clearly tends to zero as v does. Thus $R(v)$ is sublinear.
2. (a) Fix $\pi \in S_{k}$ and $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$, and write $w_{j}:=v_{\pi(j)}$ for $j=1, \ldots, k$. Observe that

$$
S_{k} \ni \sigma \mapsto \sigma \circ \pi \in S_{k}
$$

is a bijection since π is invertible (S_{k} is a group after all). Hence by the change of index given by the above map, we have

$$
\begin{aligned}
\operatorname{symm}(\beta)\left(v_{\pi(1)}, \ldots, v_{\pi(k)}\right) & =\operatorname{symm}(\beta)\left(w_{1}, \ldots, w_{k}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \beta\left(w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \beta\left(v_{\pi(\sigma(1))}, \ldots, v_{\pi(\sigma(k))}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \beta\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=\operatorname{symm}(\beta)\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

That is, $\operatorname{symm}(\beta)$ is symmetric.
(b) If $\beta=\operatorname{symm}(\beta)$, then part (a) shows that it is symmetric. On the other hand, if β is already symmetric, then we have for $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$

$$
\operatorname{symm}(\beta)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \beta\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \beta\left(v_{1}, \ldots, v_{k}\right)=\beta\left(v_{1}, \ldots, v_{k}\right),
$$

where we have used $\left|S_{k}\right|=k!$.
3. (a) We will show the Taylor remainder is sublinear. Indeed, expanding $f(p+v)$ in each entry of β, $f(p+v)-f(p)$ is the sum of β evaluated in v 's and p 's where each term has v in at least one entry. Then $R(v)$ is the sum of β evaluated in v 's and p 's where each term has v in at least two entries. Consequently,

$$
|\mathbb{R}(v)| \leq\|\beta\| \sum_{i=2}^{k}\binom{k}{i}|v|^{i}|p|^{k-i},
$$

where $\|\beta\|$ is the norm of β as a k-linear map. Since each term in the above estimate as at least two factors of $|v|$, we see that R is indeed sublinear.
(b) Again, we will show the Taylor remainder is sublinear. Using the formula from part (a), we see that $(D f)_{p+v_{1}}\left(v_{2}\right)-(D f)_{p}\left(v_{2}\right)$ (after expanding $p+v_{1}$ in the etries they appear in in β) is the sum of β evaluated in v_{1} 's, v_{2} 's, and p 's, where v_{2} appears exactly once, and v_{1} appears at least once. Then $R\left(v_{1}, v_{2}\right)$ is the sum of β evaluated in v_{1} 's, v_{2} 's, and p 's, where v_{2} appears exactly once, and v_{1} appears at least twice. Consequently,

$$
\left|R\left(v_{1}, v_{2}\right)\right| \leq\|\beta\| \sum_{i=2}^{k-1} k\left|v_{2}\right|\binom{k-1}{i}\left|v_{1}\right|^{i}|p|^{k-1-i}
$$

since each term has at least two factors of $\left|v_{1}\right|$, we have

$$
\lim _{v_{1} \rightarrow 0} \frac{\left|R\left(v_{1}, v_{2}\right)\right|}{\left|v_{1}\right|\left|v_{2}\right|}=0
$$

which implies

$$
\lim _{v_{1} \rightarrow 0} \frac{\left\|R\left(v_{1}, \cdot\right)\right\|}{\left|v_{1}\right|}
$$

where we think of $R\left(v_{1}, \cdot\right) \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Hence R is sublinear.
(c) Note that the case $r=0$ is simply saying $f(p)=\beta(p, \ldots, p)$, which holds. Now suppose the formula has been established for $r<k$ (note the strict inequality). Then for $v_{r+1} \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
& {\left[\left(D^{r} f\right)_{p+v_{1}}-\left(D^{r} f\right)_{p}\right]\left(v_{2}, \ldots, v_{r+1}\right)} \\
& \quad=\frac{k!}{(k-r)!}\left[\beta\left(v_{2}, \ldots, v_{r+1}, p+v_{1}, \ldots, p+v_{1}\right)-\beta\left(v_{2}, \ldots, v_{r+1}, p, \ldots, p\right)\right] \\
& \quad=\frac{k!}{(k-r)!} \sum_{i=1}^{k-r}\binom{k-r}{i} \beta(\underbrace{v_{1}, \ldots, v_{1}}_{i \text { times }}, v_{2}, \ldots, v_{r+1}, p, \ldots, p),
\end{aligned}
$$

where we have used the symmetry of β. Note that the term corresponding to $i=1$ in the above sum is exactly the claimed formula for $r+1$ since $\binom{k-r}{1}=\frac{(k-r)!}{(k-r-1)!}$. Hence the Taylor remainder is given by

$$
R\left(v_{1}, \ldots, v_{r+1}\right)=\frac{k!}{(k-r)!} \sum_{i=2}^{k-r}\binom{k-r}{i} \beta(\underbrace{v_{1}, \ldots, v_{1}}_{i \text { times }}, v_{2}, \ldots, v_{r+1}, p, \ldots, p)
$$

(i.e. the sum starts at $i=2$). Since each term has v_{1} appearing at least twice, we have

$$
\lim _{v_{1} \rightarrow 0} \frac{\mid R\left(v_{1}, \ldots, v_{r+1} \mid\right.}{\left|v_{1}\right| \cdots\left|v_{r+1}\right|}=0
$$

which implies

$$
\lim _{v_{1} \rightarrow 0} \frac{\left\|R\left(v_{1}, \cdot, \ldots, \cdot\right)\right\|}{\left|v_{1}\right|}=0
$$

when we think of $R\left(v_{1}, \cdot, \ldots, \cdot\right) \in \mathcal{L}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Thus the claimed formula holds for $r+1$, and so by induction we have proven the formula for $0 \leq r \leq k$.
Finally, to see the formula for $r>k$, note that $\left(D^{k}\right)_{p}=k!\operatorname{symm}(\beta)$ for all $p \in \mathbb{R}^{n}$. Hence

$$
R(v)=\left(D^{k} f\right)_{p+v}-\left(D^{k} f\right)_{p}-0=0
$$

which is clearly sublinear. Therefore $\left(D^{k+1} f\right)_{p}=\left(D\left(D^{k} f\right)\right)_{p}=0$. Since all derivatives of the zero map are the zero map, we obtain $\left(D^{r} f\right)_{p}=0$ for all $r \geq k+1$.
4. For $(x, y) \neq(0,0)$, the following formulas follow from one-dimensional differentiation rules:

$$
\frac{\partial^{2} f(x, y)}{\partial x^{2}}=-\frac{4 x y^{3}\left(x^{2}-3 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}} \quad \frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}} \quad \frac{\partial^{2} f(x, y)}{\partial y^{2}}=\frac{4 x^{3} y\left(y^{2}-3 x^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}
$$

We take a little bit more care with computing the second partials at (0, 0). First note that the partial derivatives are:

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x}= \begin{cases}\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} & \text { if } y \neq 0 \\
0 & \text { if } y=0\end{cases} \\
& \frac{\partial f(x, y)}{\partial y}= \begin{cases}\frac{x\left(x^{4}+4 x 2 y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}
\end{aligned}
$$

Then we have

$$
\frac{\partial^{2} f(0,0)}{\partial x \partial y}=\lim _{h \rightarrow 0} \frac{\frac{\partial f(h, 0)}{\partial y}-\frac{\partial f(0,0)}{\partial y}}{h}=\lim _{h \rightarrow 0} \frac{h-0}{h}=1
$$

but

$$
\frac{\partial^{2} f(0,0)}{\partial y \partial x}=\lim _{h \rightarrow 0} \frac{\frac{\partial f(0, h)}{\partial x}-\frac{\partial f(0,0)}{\partial x}}{h}=\lim _{h \rightarrow 0} \frac{-h-0}{h}=-1
$$

Thus the mixed second partials of f at $(0,0)$ do not agree.
We remark that this implies $\left(D^{2} f\right)_{(0,0)}$ cannot exist, since it would necessarily imply (as seen in class) that the mixed second partials are equal.
5. The base case of $r=2$ was done in class. Suppose we have shown $\left(D^{r-1} f\right)_{p}$ is symmetric. Then, if $\sigma \in S_{r}$ is such that $\sigma(1)=1$, we have

$$
\begin{aligned}
\left(D^{r} f\right)_{p}\left(v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right) & =\left(D^{r} f\right)_{p}\left(v_{1}, v_{\sigma(2)}, \ldots v_{\sigma(r)}\right) \\
& =\left(\left(D\left(D^{r-1} f\right)\right)_{p}\left(v_{1}\right)\right)\left(v_{\sigma(2)}, \ldots, v_{\sigma(r)}\right) \\
& =\left(\lim _{t \rightarrow 0} \frac{\left(D^{r-1} f\right)_{p+t v_{1}}-\left(D^{r-1} f\right)_{p}}{t}\right)\left(v_{\sigma(2)}, \ldots, v_{\sigma(r)}\right) \\
& =\lim _{t \rightarrow 0} \frac{\left(D^{r-1} f\right)_{p+t v_{1}}\left(v_{\sigma(2)}, \ldots, v_{\sigma(r)}\right)-\left(D^{r-1} f\right)_{p}\left(v_{\sigma(2)}, \ldots, v_{\sigma(r)}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(D^{r-1} f\right)_{p+t v_{1}}\left(v_{2}, \ldots, v_{r}\right)-\left(D^{r-1} f\right)_{p}\left(v_{2}, \ldots, v_{r}\right)}{t}=\left(D^{r} f\right)_{p}\left(v_{1}, \ldots, v_{r}\right),
\end{aligned}
$$

where in the second to last equality we have used the induction hypothesis.
Next, consider $g: U \rightarrow \mathcal{L}^{r-2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ defined by $g(p)=\left(D^{r-2} f\right)_{p}$. (Note that this is well-defined since $r \geq 2$). Then

$$
\left(D^{2} g\right)_{p}\left(v_{1}, v_{2}\right)=\left(D^{r} f\right)_{p}\left(v_{1}, v_{2}, \cdot, \ldots, \cdot\right) \in \mathcal{L}^{r-2}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

By our base case, we have

$$
\left(D^{r} f\right)_{p}\left(v_{2}, v_{1}, \cdot, \ldots, \cdot\right)=\left(D^{2} g\right)_{p}\left(v_{2}, v_{1}\right)=\left(D^{2} g\right)_{p}\left(v_{1}, v_{2}\right)=\left(D^{r} f\right)_{p}\left(v_{1}, v_{2}, \cdot, \ldots, \cdot\right)
$$

thus $\left(D^{r} f\right)_{p}$ is symmetric with respect to permutations of v_{1}, v_{2}.
Combining the two above arguments, to complete the induction argument it suffices to show that any $\sigma \in S_{k}$ can be written as a product of permutations that fix 1 and permutations that only act on 1 and 2. But for $\sigma \in S_{r}$, if $\sigma(1)=k$ then it it is easy to check that

$$
\sigma=(1,2)(2, k)(1,2)(1, k) \sigma
$$

(where (i, j) represents that the transposition switching i and j), and observe that $(1, k) \sigma$ and $(2, k)$ fix 1 . Thus, by induction if follows that $\left(D^{r} f\right)_{p}$ is symmetric.

