Exercises:

1. Consider $f: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$f(x_1, x_2, x_3) = (x_1 x_2 + x_2 x_3, x_3^3).$$

For $p \in \mathbb{R}^3$, determine the matrix representation for $(D^2 f)_p$ with respect to the ordered basis

$$\{(e_1, e_1), (e_1, e_2), (e_1, e_3), (e_2, e_1), (e_2, e_2), (e_2, e_3), (e_3, e_1), (e_3, e_2), (e_3, e_3)\}$$

for \mathbb{R}^{3^2} . Then prove that the corresponding Taylor remainder for Df at p is sublinear.

[Note: you already computed $(Df)_p$ on Homework 2, so you do not need to rederive this.]

2. Let $\beta \in \mathcal{L}^{k}(\mathbb{R}^{n}, \mathbb{R}^{m})$ be a k-linear map. The symmetrization of β is the k-linear map symm $(\beta) \in \mathcal{L}^{k}(\mathbb{R}^{n}, \mathbb{R}^{m})$ defined by

$$\operatorname{symm}(\beta)(v_1,\ldots,v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \beta(v_{\sigma(1)},\ldots,v_{\sigma(k)}),$$

where S_k is the permutation group on k elements.

- (a) Show that $\operatorname{symm}(\beta)$ is indeed symmetric.
- (b) Show that β is symmetric if and only if $\beta = \text{symm}(\beta)$.

3. Let $\beta \in \mathcal{L}^k(\mathbb{R}^n, \mathbb{R}^m)$ be a k-linear map. Define $f \colon \mathbb{R}^n \to \mathbb{R}^m$ by $f(x) = \beta(x, \dots, x)$.

(a) Show that for $p, v \in \mathbb{R}^n$

$$(Df)_p(v) = \beta(v, p, \dots, p) + \beta(p, v, p, \dots, p) + \dots + \beta(p, \dots, p, v).$$

(b) Show that for $p, v_1, v_2 \in \mathbb{R}^n$

$$(D^{2}f)_{p}(v_{1},w_{2}) = \sum_{1 \le i < j \le k} \sum_{\sigma \in S_{2}} \beta(\underbrace{p,\ldots,p}_{i-1},v_{\sigma(1)},\underbrace{p,\ldots,p}_{j-i-1},v_{\sigma(2)},p,\ldots,p)$$

(c) Further assume that β is symmetric. For $r \ge 0$, show that for $p, v_1, \ldots, v_r \in \mathbb{R}^n$

$$(D^{r}f)_{p}(v_{1},\ldots,v_{r}) = \begin{cases} \frac{k!}{(k-r)!}\beta(v_{1},\ldots,v_{r},p,\ldots,p) & \text{if } r \leq k\\ 0 & \text{if } r > k \end{cases}$$

Note that this implies $(D^k f)_p = k! \text{symm}(\beta)$.

[Hint: proceed by induction and note that the base case r = 0 is trivial.]

4. Consider $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Show that the second partial derivatives exists everywhere, but that $\frac{\partial^2 f(0,0)}{\partial x \partial y} \neq \frac{\partial^2 f(0,0)}{\partial y \partial x}$.

5. Let $f: U \to \mathbb{R}^m$ be r-times differentiable at $p \in U$ with $r \geq 3$. Use induction to show that $(D^r f)_p$ is symmetric: first show for $v_1, \ldots, v_r \in \mathbb{R}^n$ that $(D^r f)_p$ is symmetric with respect to permutations of v_2, \ldots, v_r , and then use the fact that r > 2 to show that it is also invariant under permutations of v_1 and v_2 .

Solutions:

1. By a result from class, we know the entries of $(D^2 f)_p$ are of the form

$$\frac{\partial^2 f_k(p)}{\partial x_i \partial x_j},$$

where k determines the row and (i, j) determines the column according to our ordered basis. For example, $\frac{\partial^2 f_1(p)}{\partial x_2 \partial x_3}$ will appear in the 1st row and, since (e_2, e_3) is the sixth basis vector, the 6th column. So we have

Now, the Taylor remainder at p is given by

$$R(v) = (Df)_{p+v} - (Df)_p - (D^2f)_p(v, \cdot),$$

where we are thinking of $(D^2 f)_p \in \mathcal{L}^2(\mathbb{R}^3, \mathbb{R}^2)$ so that $(D^2 f)_p(v, \cdot) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$. Also, observe that $R(v) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$. Thus, to check sublinearity, we must show:

$$\lim_{v \to 0} \frac{\|R(v)\|}{|v|} = 0$$

By definition of the operator norm, it suffices to show for any $w \in \mathbb{R}^3 \setminus \{0\}$ that

$$\lim_{v \to 0} \frac{|(R(v))(w)|}{|v||w|} = 0.$$

Using Exercise 3 from Homework 2, we first compute

$$(Df)_{p+v} - (Df)_p = \begin{bmatrix} p_2 + v_2 & (p_1 + v_1) + (p_3 + v_3) & p_2 + v_2 \\ 0 & 0 & 3(p_3 + v_3)^2 \end{bmatrix} - \begin{bmatrix} p_2 & p_1 + p_3 & p_2 \\ 0 & 0 & 3p_3^2 \end{bmatrix} \\ = \begin{bmatrix} v_2 & v_1 + v_3 & v_2 \\ 0 & 0 & 6p_3v_3 + 3v_3^2 \end{bmatrix}.$$

Using this, our formula for $(D2^f)_p$, and writing $(v, w) = \sum_{i,j=1}^3 v_i w_j(e_i, e_j)$ we can compute

$$(R(v))(w) = \begin{bmatrix} v_2 & v_1 + v_3 & v_2 \\ 0 & 0 & 6p_3v_3 + 3v_3^2 \end{bmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} - (D^2 f)_p(v, w)$$
$$= \begin{pmatrix} v_2w_1 + (v_1 + v_3)w_2 + v_2w_3 \\ 6p_3v_3w_3 + 3v_3^2w_3 \end{pmatrix} - \begin{pmatrix} v_1w_2 + v_2w_1 + v_2w_3 + v_3w_2 \\ 6p_3v_3w_3 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 3v_3^2w_3 \end{pmatrix}.$$

Thus

$$\frac{|(R(v))(w)|}{|v||w|} = \frac{|3v_3^2w_3|}{|v||w|} \le \frac{3|v|^2|w|}{|v||w|} = 3|v|,$$

which clearly tends to zero as v does. Thus R(v) is sublinear.

2. (a) Fix $\pi \in S_k$ and $v_1, \ldots, v_k \in \mathbb{R}^n$, and write $w_j := v_{\pi(j)}$ for $j = 1, \ldots, k$. Observe that

$$S_k \ni \sigma \mapsto \sigma \circ \pi \in S_k$$

is a bijection since π is invertible (S_k is a group after all). Hence by the change of index given by the above map, we have

$$\operatorname{symm}(\beta)(v_{\pi(1)},\ldots,v_{\pi(k)}) = \operatorname{symm}(\beta)(w_1,\ldots,w_k)$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} \beta(w_{\sigma(1)},\ldots,w_{\sigma(k)})$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} \beta(v_{\pi(\sigma(1))},\ldots,v_{\pi(\sigma(k))})$$
$$= \frac{1}{k!} \sum_{\sigma \in S_k} \beta(v_{\sigma(1)},\ldots,v_{\sigma(k)}) = \operatorname{symm}(\beta)(v_1,\ldots,v_k).$$
symm(\$\beta\$) is symmetric.

That is, $\operatorname{symm}(\beta)$ is symmetric.

(b) If $\beta = \text{symm}(\beta)$, then part (a) shows that it is symmetric. On the other hand, if β is already symmetric, then we have for $v_1, \ldots, v_k \in \mathbb{R}^n$

$$\operatorname{symm}(\beta)(v_1,\ldots,v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \beta(v_{\sigma(1)},\ldots,v_{\sigma(k)}) = \frac{1}{k!} \sum_{\sigma \in S_k} \beta(v_1,\ldots,v_k) = \beta(v_1,\ldots,v_k),$$

where we have used $|S_k| = k!$.

whe have used $|S_k|$

3. (a) We will show the Taylor remainder is sublinear. Indeed, expanding f(p+v) in each entry of β , f(p+v) - f(p) is the sum of β evaluated in v's and p's where each term has v in at least one entry. Then R(v) is the sum of β evaluated in v's and p's where each term has v in at least two entries. Consequently,

$$|\mathbb{R}(v)| \le \|\beta\| \sum_{i=2}^k \binom{k}{i} |v|^i |p|^{k-i},$$

where $\|\beta\|$ is the norm of β as a k-linear map. Since each term in the above estimate as at least two factors of |v|, we see that R is indeed sublinear. \square

(b) Again, we will show the Taylor remainder is sublinear. Using the formula from part (a), we see that $(Df)_{p+v_1}(v_2) - (Df)_p(v_2)$ (after expanding $p + v_1$ in the etries they appear in β) is the sum of β evaluated in v_1 's, v_2 's, and p's, where v_2 appears exactly once, and v_1 appears at least once. Then $R(v_1, v_2)$ is the sum of β evaluated in v_1 's, v_2 's, and p's, where v_2 appears exactly once, and v_1 appears at least twice. Consequently,

$$|R(v_1, v_2)| \le ||\beta|| \sum_{i=2}^{k-1} k|v_2| \binom{k-1}{i} |v_1|^i |p|^{k-1-i},$$

since each term has at least two factors of $|v_1|$, we have

$$\lim_{v_1\to 0}\frac{|R(v_1,v_2)|}{|v_1||v_2|}=0,$$

which implies

$$\lim_{v_1 \to 0} \frac{\|R(v_1, \cdot)\|}{|v_1|}$$

where we think of $R(v_1, \cdot) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Hence R is sublinear.

(c) Note that the case r = 0 is simply saying $f(p) = \beta(p, \ldots, p)$, which holds. Now suppose the formula has been established for r < k (note the strict inequality). Then for $v_{r+1} \in \mathbb{R}^n$ we have

$$[(D^{r}f)_{p+v_{1}} - (D^{r}f)_{p}](v_{2}, \dots, v_{r+1}) = \frac{k!}{(k-r)!} [\beta(v_{2}, \dots, v_{r+1}, p+v_{1}, \dots, p+v_{1}) - \beta(v_{2}, \dots, v_{r+1}, p, \dots, p)] = \frac{k!}{(k-r)!} \sum_{i=1}^{k-r} {\binom{k-r}{i}} \beta(\underbrace{v_{1}, \dots, v_{1}}_{i \text{ times}}, v_{2}, \dots, v_{r+1}, p, \dots, p),$$

where we have used the symmetry of β . Note that the term corresponding to i = 1 in the above sum is exactly the claimed formula for r + 1 since $\binom{k-r}{1} = \frac{(k-r)!}{(k-r-1)!}$. Hence the Taylor remainder is given by

$$R(v_1, \dots, v_{r+1}) = \frac{k!}{(k-r)!} \sum_{i=2}^{k-r} \binom{k-r}{i} \beta(\underbrace{v_1, \dots, v_1}_{i \text{ times}}, v_2, \dots, v_{r+1}, p, \dots, p)$$

(i.e. the sum starts at i = 2). Since each term has v_1 appearing at least twice, we have

$$\lim_{v_1 \to 0} \frac{|R(v_1, \dots, v_{r+1})|}{|v_1| \cdots |v_{r+1}|} = 0$$

which implies

$$\lim_{v_1 \to 0} \frac{\|R(v_1, \cdot, \dots, \cdot)\|}{|v_1|} = 0,$$

when we think of $R(v_1, \cdot, \ldots, \cdot) \in \mathcal{L}^r(\mathbb{R}^n, \mathbb{R}^m)$. Thus the claimed formula holds for r + 1, and so by induction we have proven the formula for $0 \le r \le k$.

Finally, to see the formula for r > k, note that $(D^k)_p = k! \text{symm}(\beta)$ for all $p \in \mathbb{R}^n$. Hence

$$R(v) = (D^k f)_{p+v} - (D^k f)_p - 0 = 0$$

which is clearly sublinear. Therefore $(D^{k+1}f)_p = (D(D^k f))_p = 0$. Since all derivatives of the zero map are the zero map, we obtain $(D^r f)_p = 0$ for all $r \ge k+1$.

4. For $(x, y) \neq (0, 0)$, the following formulas follow from one-dimensional differentiation rules:

$$\frac{\partial^2 f(x,y)}{\partial x^2} = -\frac{4xy^3(x^2 - 3y^2)}{(x^2 + y^2)^3} \qquad \frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3} \qquad \frac{\partial^2 f(x,y)}{\partial y^2} = \frac{4x^3y(y^2 - 3x^2)^2}{(x^2 + y^2)^3}$$

We take a little bit more care with computing the second partials at (0,0). First note that the partial derivatives are:

$$\frac{\partial f(x,y)}{\partial x} = \begin{cases} \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} & \text{if } y \neq 0\\ 0 & \text{if } y = 0 \end{cases}$$
$$\frac{\partial f(x,y)}{\partial y} = \begin{cases} \frac{x(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}.$$

Then we have

$$\frac{\partial^2 f(0,0)}{\partial x \partial y} = \lim_{h \to 0} \frac{\frac{\partial f(h,0)}{\partial y} - \frac{\partial f(0,0)}{\partial y}}{h} = \lim_{h \to 0} \frac{h-0}{h} = 1,$$

but

$$\frac{\partial^2 f(0,0)}{\partial y \partial x} = \lim_{h \to 0} \frac{\frac{\partial f(0,h)}{\partial x} - \frac{\partial f(0,0)}{\partial x}}{h} = \lim_{h \to 0} \frac{-h - 0}{h} = -1$$

Thus the mixed second partials of f at (0,0) do not agree.

We remark that this implies $(D^2 f)_{(0,0)}$ cannot exist, since it would necessarily imply (as seen in class) that the mixed second partials are equal.

5. The base case of r = 2 was done in class. Suppose we have shown $(D^{r-1}f)_p$ is symmetric. Then, if $\sigma \in S_r$ is such that $\sigma(1) = 1$, we have

$$\begin{split} (D^r f)_p(v_{\sigma(1)}, \dots, v_{\sigma(r)}) &= (D^r f)_p(v_1, v_{\sigma(2)}, \dots, v_{\sigma(r)}) \\ &= ((D(D^{r-1}f))_p(v_1))(v_{\sigma(2)}, \dots, v_{\sigma(r)}) \\ &= \left(\lim_{t \to 0} \frac{(D^{r-1}f)_{p+tv_1} - (D^{r-1}f)_p}{t}\right)(v_{\sigma(2)}, \dots, v_{\sigma(r)}) \\ &= \lim_{t \to 0} \frac{(D^{r-1}f)_{p+tv_1}(v_{\sigma(2)}, \dots, v_{\sigma(r)}) - (D^{r-1}f)_p(v_{\sigma(2)}, \dots, v_{\sigma(r)})}{t} \\ &= \lim_{t \to 0} \frac{(D^{r-1}f)_{p+tv_1}(v_2, \dots, v_r) - (D^{r-1}f)_p(v_2, \dots, v_r)}{t} = (D^r f)_p(v_1, \dots, v_r), \end{split}$$

where in the second to last equality we have used the induction hypothesis.

Next, consider $g: U \to \mathcal{L}^{r-2}(\mathbb{R}^n, \mathbb{R}^m)$ defined by $g(p) = (D^{r-2}f)_p$. (Note that this is well-defined since $r \ge 2$). Then

$$(D^2g)_p(v_1, v_2) = (D^r f)_p(v_1, v_2, \cdot, \dots, \cdot) \in \mathcal{L}^{r-2}(\mathbb{R}^n, \mathbb{R}^m).$$

By our base case, we have

$$(D^r f)_p(v_2, v_1, \cdot, \dots, \cdot) = (D^2 g)_p(v_2, v_1) = (D^2 g)_p(v_1, v_2) = (D^r f)_p(v_1, v_2, \cdot, \dots, \cdot),$$

thus $(D^r f)_p$ is symmetric with respect to permutations of v_1, v_2 .

Combining the two above arguments, to complete the induction argument it suffices to show that any $\sigma \in S_k$ can be written as a product of permutations that fix 1 and permutations that only act on 1 and 2. But for $\sigma \in S_r$, if $\sigma(1) = k$ then it it is easy to check that

$$\sigma = (1,2)(2,k)(1,2)(1,k)\sigma$$

(where (i, j) represents that the transposition switching i and j), and observe that $(1, k)\sigma$ and (2, k) fix 1. Thus, by induction if follows that $(D^r f)_p$ is symmetric.

2/7/2018