
Math 105 Homework 3 Solutions 1/31/2018

Exercises:

1. In this exercise, we will verify the Chain Rule. Consider the functions f : R2 → R3 and g : R3 → R
defined by

f(x1, x2) = (x1x2, x1 + x2, x
2
1) g(x1, x2, x3) = x1x2x3.

(a) Compute (Df)x and (Dg)y for x ∈ R2 and y ∈ R3.

(b) Determine the formula for g ◦ f : R2 → R and compute (D(g ◦ f))x for x ∈ R2.

(c) Compute (Dg)f(x) ◦ (Df)x for x ∈ R2, and compare this to part (b).

2. In this exercise, we will verify the Product Rule (for the bilinear form determined by the standard
inner product on R2). Consider the functions f, g : R2 → R2 defined by

f(x1, x2) = (x22, x
2
1) g(x1, x2) = (cos(x1), sin(x2)).

(a) Compute (Df)x and (Dg)x for x ∈ R2.

(b) Define h : R2 → R by
h(x1, x2) = 〈f(x1, x2), g(x1, x2)〉 .

Compute (Dh)x for x ∈ R2.

(c) Show that for any x, v ∈ R2,

(Dh)x(v) = 〈(Df)x(v), g(x)〉+ 〈f(x), (Dg)x(v)〉 .

[Hint: by linearity, it suffices to check the above equality for v = e1, e2.]

3. Let U ⊂ Rn be open, and let f : U → Rm be differentiable on U . Let [p, q] ⊂ U be a segment. Assume
the set

C = {(Df)x ∈ L(Rn,Rm) : x ∈ [p, q]}

is closed and convex: whenever T, S ∈ C we have tT + (1 − t)S ∈ C for t ∈ [0, 1]. Show that there
exists θ ∈ [p, q] such that

f(q)− f(p) = (Df)θ(q − p);

that is, the direct generalization of one-dimensional the Mean Value Theorem holds. You may (and
should) use the following special case of the Hahn–Banach separation theorem without proof: if
A and B are non-empty, disjoint convex sets in Rm and A is open, then there exists a vector v ∈ Rm
and a scalar c ∈ R such that

〈v, a〉 < c ≤ 〈v, b〉

for all a ∈ A and b ∈ B.

[Hint: proceed by contradiction and use the separation theorem in conjunction with the one-dimensional
Mean Value Theorem.]

4. Let U ⊂ Rn be open and connected, and let f : U → Rm be differentiable on U with (Df)p = 0 for all
p ∈ U . Show that f is constant.

5. Let (E, d) be an arbitrary metric space and let [a, b] ⊂ R. Equip [a, b]× E with the product metric:

d2((x, y), (x′, y′)) =
√
|x− x′|2 + d(y, y′)2 x, x′ ∈ [a, b], y, y′ ∈ E.

Let f : [a, b]× E → R be a continuous function. Show that

F (y) =

∫ b

a

f(x, y) dx

is continuous on E.

[Hint: recall that [a, b] is compact.]
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Solutions:
1. (a) We claim

(Df)x =

 x2 x1
1 1

2x1 0

 and (Dg)y =
[
y2y3 y1y3 y1y2

]
.

One can easily show that the corresponding Taylor remainders are sublinear, but here we simply
note that the entries are clearly the partial derivatives, which are continuous. Consequently, a
theorem of class implies (Df)x and (Dg)y exist and are given by the above formulas. �

(b) We compute:

g ◦ f(x1, x2) = g(x1x2, x1 + x2, x
2
1) = x1x2(x1 + x2)x21 = x41x2 + x31x

2
2.

The partial derivatives are easily computed and seen to be continuous. Hence we have

(D(g ◦ f))x =
[

4x31x2 + 3x21x
2
2 x41 + 2x31x2

]
.

�

(c) Writing f(x) = (f1(x), f2(x), f3(x)), we compute

(Dg)f(x) ◦ (Df)x =
[
f2(x)f3(x) f1(x)f3(x) f1(x)f2(x)

]
·

 x2 x1
1 1

2x1 0


=
[
x31 + x21x2 x31x2 x21x2 + x1x

2
2

]  x2 x1
1 1

2x1 0


=
[
x31x2 + x21x

2
2 + x31x2 + 2x31x2 + 2x21x

2
2 x41 + x21x2 + x21x2

]
=
[

4x31x2 + 3x21x
2
2 x41 + 2x31x2

]
,

which agrees with out computation in part (b). �

2. (a) By computing the partial derivatives (and noting their continuity), we obtain:

(Df)x =

[
0 2x2

2x1 0

]
and (Dg)x =

[
− sin(x1) 0

0 cos(x2)

]
�

(b) Observe that
h(x1, x2) = x22 cos(x1) + x21 sin(x2).

So by computing partial derivatives (and noting their continuity), we obtain:

(Dh)x =
[
−x22 sin(x1) + 2x1 sin(x2) 2x2 cos(x1) + x21 cos(x2)

]
(c) We will make use of the hint. Observe that (Dh)x(ej) is just the jth column of (Dh)x, which we

can read off from part (b). Now, we compute

〈(Df)x(e1), g(x)〉+ 〈f(x), (Dg)x(e1)〉 =

〈(
0

2x1

)
,

(
cos(x1)

sin(x2)

)〉
+

〈(
x22
x21

)
,

(
− sin(x1)

0

)〉
= 2x1 sin(x2)− x22 sin(x1),

which is the first entry of (Dh)x. Similarly,

〈(Df)x(e2), g(x)〉+ 〈f(x), (Dg)x(e2)〉 =

〈(
2x2
0

)
,

(
cos(x1)

sin(x2)

)〉
+

〈(
x22
x21

)
,

(
0

cos(x2)

)〉
= 2x2 cos(x1) + x21 cos(x2),

which is the second entry of (Dh)x. �
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3. Suppose, towards a contradiction, that for every θ ∈ [p, q] we have f(q)− f(p) 6= (Df)θ(q− p). Define

B := {(Df)x(p− q) : x ∈ [p, q]} ⊂ Rm.

Since C is closed and convex, it follows that B is closed and convex. By assumption, B is disjoint from
{f(q) − f(p)}. Since B is closed, its complement is open and so there exists r > 0 such that the ball
in Rm with center f(q) − f(p) and radius r is disjoint from B. Call this ball A, and note that open
balls are convex. The Hahn–Banach separation theorem yields a vector v ∈ Rm and a scalar c ∈ R
such that

〈v, a〉 < c ≤ 〈v, b〉
for all a ∈ A and b ∈ B.

Now, consider g : [0, 1]→ R be defined by

g(t) = 〈v, f(p+ t(q − p))〉 = vTf(p+ t(q − p)).

Then g is the composition of differentiable functions (see below) and hence is differentiable. So by the
one dimensional Mean Value Theorem we have for some t ∈ (0, 1)

〈v, f(q)− f(p)〉 = g(1)− g(0) = g′(t).

Now, g = h1 ◦ f ◦ h2, where h1 : Rm → R is defined by h1(x) = vTx and h2 : R → Rn is defined by
h2(t) = p + t(p − q). These are linear operators (plus a constant for h2), and so (Dh1)x = vT for all
x ∈ Rm and (Dh2)t = q − p for all t ∈ [0, 1]. Thus the Chain Rule implies

g′(t) = (Dh1)f◦h2(t)(Df)h2(t)(q − p) = vT(Df)p+t(q−p)(q − p) =
〈
v, (Df)p+t(q−p)(q − p)

〉
.

Combining this with the previous equality yields for some t ∈ (0, 1)

〈v, f(q)− f(p)〉 =
〈
v, (Df)p+t(q−p)(q − p)

〉
.

But this contradicts 〈v, a〉 < c ≤ 〈v, b〉 for all a ∈ A and b ∈ B. Thus there must exist some θ ∈ [p, q]
such that f(q)− f(p) = (Df)θ(q − p). �

4. Observe that U 3 p 7→ (Df)p = 0 is continuous. Hence f is of class C1 and therefore by the C1 Mean
Value Theorem we have for any segment [p, q] ⊂ U

f(q)− f(p) =

(∫ 1

0

(Df)p+t(q−p)dt

)
(q − p) =

(∫ 1

0

0 dt

)
(q − p) = 0(q − p) = 0.

That is f(q) = f(p).

Now, fix p ∈ U and let

A = {q ∈ U : q can be connected to p via segments contained in U}.

So if q ∈ A, then there exists q1, . . . , qn ∈ U such that [p, q1], [q1, q2], . . . , [qn, q] ⊂ U . By the above
argument, we therefore have

f(p) = f(q1) = f(q2) = · · · = f(qn) = f(q).

Thus f(q) = f(p) for all q ∈ A. If we can show that A = U , then we will have shown f is constant.
First note that A is open. Indeed, if q ∈ A ⊂ U , then there is a ball centered at q contained in U .
Every element in this ball can be connected to q via a segment contained in U (namely a radius of the
ball), and hence every element can be connected to p by first using the segments that reach q followed
by the radius of the ball. Hence this ball is also contained in A, and A is open. We also claim that
U \ A is open. Indeed, if q ∈ U \ A then we can once more find a ball centered at q and contained in
U . Now, no element of this ball can lie in A since then the series of segments in U connecting it to p
followed by a radius of the ball would yield a series of segments in U connecting q to p, contradicting
q 6∈ A. Thus the ball is contained in U \ A, which means U \ A is open. Since U is connected, we
can only have A and U \ A open if one of them is empty. We clearly have p ∈ A, so it must be that
U \A = ∅. Hence A = U as desired. �

3 c©Brent Nelson 2018



Math 105 Homework 3 Solutions 1/31/2018

5. Fix y ∈ E and let ε > 0. For each x ∈ [a, b], we use the continuity of f to find δ(x) > 0 such that if
(x′, y′) ∈ E satisfies d2((x, y), (x′, y′)) < δ(x), then

|f(x, y)− f(x′, y′)| < ε

2(b− a)
.

For each x ∈ [a, b], denote Ix := (x − 1√
2
δ(x), x + 1√

2
δ(x)). Observe that {Ix}x∈[a,b] is an open cover

for the compact set [a, b]. Hence there exists a finite subcover:

{Ix1 , . . . , Ixn};

Define δ := min{ 1√
2
δ(x1), . . . , 1√

2
δ(xn)} > 0.

Now, suppose y′ ∈ E satisfies d(y, y′) < δ. Then for any x ∈ [a, b], there is some j ∈ {1, . . . , n} such
that x ∈ Ixj

, which means |x− xj | < 1√
2
δ(xj). Consequently,

d2((x, y′), (xj , y)) =
√
|x− xj |2 + d(y′, y)2 <

√
1

2
δ(xj)2 + δ2 ≤

√
δ(xj)2 = δ(xj)

and

d2((xj , y), (x, y)) =
√
|xj − x|2 + d(y, y) <

√
1

2
δ(xj)2 < δ(xj).

By definition of δ(xj), this implies

|f(x, y′)− f(x, y)| ≤ |f(x, y′)− f(xj , y)|+ |f(xj , y)− f(x, y)| < ε

2(b− a)
+

ε

2(b− a)
=

ε

b− a
.

Since this holds for all x ∈ [a, b], we have

|F (y′)− F (y)| ≤
∫ b

a

|f(x, y)− f(x, y′)| dx <
∫ b

a

ε

b− a
dx = ε.

Thus F is continuous at y. Since y ∈ E was arbitrary, we see that F is continuous on E. �
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