Exercises:

1. Two norms $|\cdot|_{1}$ and $|\cdot|_{2}$ on a vector space V are equivalent if there exists positive constants c and C such that for all $v \in V \backslash\{0\}$

$$
c \leq \frac{|v|_{1}}{|v|_{2}} \leq C
$$

(a) Show that any two norms on a finite-dimensional vector space are equivalent.
(b) Let $C([0,1])$ be the space of continuous functions from $[0,1]$ to \mathbb{R}. For $f \in C([0,1])$ consider the following two norms:

$$
|f|_{1}:=\int_{0}^{1}|f(t)| d t \quad|f|_{\infty}:=\max \{|f(t)|: 0 \leq t \leq 1\}
$$

Show that these two norms are not equivalent.
[Note: you do not need to verify that these are in fact norms.]
2. Let $C([0,1])$ be as in the previous exercise, equipped with the $|\cdot|_{\infty}$-norm. Let $C^{1}([0,1])$ be the (dense) subspace of $C([0,1])$ consisting of differentiable functions whose derivatives are continuous.
(a) Define $T: C([0,1]) \rightarrow C^{1}([0,1])$ by

$$
(T f)(t)=\int_{0}^{t} f(x) d x
$$

Show that T is continuous by determining its operator norm.
(b) Define $S: C^{1}([0,1]) \rightarrow C([0,1])$ by $S f=f^{\prime}$. Show that S that is not continuous by showing its operator norm is infinite.
[Hint: consider the monomials $t^{n}, n \in \mathbb{N}$.]
(c) [Not collected] Convince yourself that

$$
S \circ T: C([0,1]) \rightarrow C([0,1])
$$

is the identity map, and that

$$
T \circ S: C^{1}([0,1]) \rightarrow C^{1}([0,1])
$$

is the identity map minus the linear transformation that evaluates a function at 0 .
3. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}+x_{2} x_{3}, x_{3}^{3}\right)
$$

For $p=\left(p_{1}, p_{2}, p_{3}\right) \in \mathbb{R}^{3}$, use the definition of the derivative to show $(D f)_{p}=T_{A}$ where

$$
A=\left[\begin{array}{ccc}
p_{2} & p_{1}+p_{3} & p_{2} \\
0 & 0 & 3 p_{3}^{2}
\end{array}\right]
$$

(i.e. show the Taylor remainder is sublinear).
4. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \text { if }\left(x_{1}, x_{2}\right) \neq 0 \\
0 & \text { if }\left(x_{1}, x_{2}\right)=0
\end{array} .\right.
$$

Show that the partial derivatives $\frac{\partial f(0)}{\partial x_{1}}$ and $\frac{\partial f(0)}{\partial x_{2}}$ exist but $(D f)_{0}$ does not.

Solutions:

1. (a) Write V_{i} for V equipped with $|\cdot|_{i}, i=1,2$. Consider the linear transformation $T: V_{1} \rightarrow V_{2}$ given by $T v=v$. Clearly T is an isomorphism. Since V is finite dimensional, a theorem from lecture implies that T is a homeomorphism; that is, T and T^{-1} are continuous. By another theorem from class, this means $\|T\|$ and $\left\|T^{-1}\right\|$ are finite. For $v \in V \backslash\{0\}$, we then have

$$
0<\frac{|v|_{2}}{|v|_{1}}=\frac{|T(v)|_{2}}{|v|_{1}} \leq\|T\|,
$$

and

$$
\frac{|v|_{1}}{|v|_{2}}=\frac{\left|T^{-1}(v)\right|_{1}}{|v|_{2}} \leq\left\|T^{-1}\right\| .
$$

Set $c=\frac{1}{\|T\|}$ and $C=\left\|T^{-1}\right\|$.
(b) We consider the functions $f_{n}(x):=x^{n}$. Then $\left|f_{n}\right|_{1}=\frac{1}{n+1}$ while $\left|f_{n}\right|_{\infty}=1$. Thus the ratio

$$
\frac{\left|f_{n}\right|_{1}}{\left|f_{n}\right|_{\infty}}=\frac{1}{n+1}
$$

can be made arbitrarily small and is therefore not bounded below by some uniform positive constant c.
2. (a) For $f \in C([0,1])$ we have for each $t \in[0,1]$

$$
|(T f)(t)|=\left|\int_{0}^{t} f(x) d x\right| \leq \int_{0}^{t}|f(x)| d x \leq \int_{0}^{t}|f|_{\infty} d x=t|f|_{\infty}
$$

Therefore, $|T f|_{\infty} \leq 1 \cdot|f|_{\infty}=|f|_{\infty}$. Hence $\|T\| \leq 1$. On the other hand, for $f(x)=1$ we have

$$
\|T\| \geq \frac{|T f|_{\infty}}{|f|_{\infty}}=\frac{|t|_{\infty}}{|1|_{\infty}}=\frac{1}{1}=1
$$

Thus $\|T\|=1$.
(b) For $f_{n}(t):=t^{n}$ we have $\left(S f_{n}\right)(t)=n t^{n-1}$. Thus

$$
\frac{\left|S f_{n}\right|_{\infty}}{\left|f_{n}\right|_{\infty}}=\frac{n}{1}=n .
$$

Consequently $\|S\| \geq \sup (\mathbb{N})=\infty$.
(c) Indeed, this simply follows from the Fundamental Theorem(s) of Calculus.
3. We begin by computing the Taylor remainder $R(v)$ for $v=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$:

$$
\begin{aligned}
R(v) & =f(p+v)-f(p)-A v \\
& =\binom{\left(p_{1}+v_{1}\right)\left(p_{2}+v_{2}\right)+\left(p_{2}+v_{2}\right)\left(p_{3}+v_{3}\right)}{\left(p_{3}+v_{3}\right)^{3}}-\binom{p_{1} p_{2}+p_{2} p_{3}}{p_{3}^{3}}-\binom{p_{2} v_{1}+\left(p_{1}+p_{3}\right) v_{2}+p_{2} v_{3}}{3 p_{3}^{2} v_{3}} \\
& =\binom{v_{1} v_{2}+v_{2} v_{3}}{3 p_{3} v_{3}^{2}+v_{3}^{3}} .
\end{aligned}
$$

Now, to estimate $\frac{|R(v)|}{|v|}$, recall that $\left|\left(x_{1}, x_{2}\right)\right| \leq\left|x_{1}\right|+\left|x_{2}\right|$ (to see this, square each side of the inequality). It then follows that

$$
\frac{|R(v)|}{|v|} \leq \frac{\left|v_{1} v_{2}+v_{2} v_{3}\right|}{|v|}+\frac{\left|3 p_{3} v_{3}^{2}+v_{3}^{3}\right|}{|v|} .
$$

Next, recall that $|v| \geq\left|v_{j}\right|$ for each $j=1,2,3$. We will apply this to the above estimate with $j=2$ in the first term and $j=3$ in the second term:

$$
\frac{|R(v)|}{|v|} \leq \frac{v_{1} v_{2}+v_{2} v_{3} \mid}{\left|v_{2}\right|}+\frac{\left|3 p_{3} v_{3}^{2}+v_{3}^{3}\right|}{\left|v_{3}\right|}=\left|v_{1}+v_{3}\right|+\left|3 p_{3} v_{3}+v_{3}^{2}\right| .
$$

This tends to zero as $v \rightarrow 0$ since each of the components of v tend to zero. Thus $R(v)$ is sublinear and $A=(D f)_{p}$ as claimed.
4. We compute

$$
\frac{\partial f(0)}{\partial x_{1}}=\lim _{t \rightarrow 0} \frac{f(0+t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{\frac{0}{t^{2}+0}-0}{t}=0
$$

and similarly $\frac{\partial f(0)}{\partial x_{2}}=0$.
Now, supposed towards a contradiction that $(D f)_{0}$ exists. Then by a theorem from class:

$$
(D f)_{0}=\left[\begin{array}{ll}
\frac{\partial f(0)}{\partial x_{1}} & \frac{\partial f(0)}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right] .
$$

Consequently, the Taylor remainder for $v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$ is

$$
R(v)=f(0+v)-f(0)-\left[\begin{array}{ll}
0 & 0
\end{array}\right] \cdot v=f(v)=\frac{v_{1} v_{2}}{v_{1}^{2}+v_{2}^{2}}
$$

and so

$$
\frac{|R(v)|}{|v|}=\frac{\left|v_{1} v_{2}\right|}{v_{1}^{2}+v_{2}^{2}} \cdot \frac{1}{\sqrt{v_{1}^{2}+v_{2}^{2}}}=\frac{\left|v_{1} v_{2}\right|}{\left(v_{1}^{2}+v_{2}^{2}\right)^{\frac{3}{2}}} .
$$

This is not sublinear. Indeed, for $v=(t, t)$, which tends to the origin as $t \rightarrow 0$, we have

$$
\frac{|R(v)|}{|v|}=\frac{t^{2}}{\left(2 t^{2}\right)^{\frac{3}{2}}}=\frac{1}{(2)^{\frac{3}{2}}|t|}
$$

which does not tend to zero as t does, a contradiction.

