Exercises:

- 1. Let $f: \mathbb{R}^d \to \overline{\mathbb{R}}$. Show that f is measurable if and only if $f^{-1}(\{\infty\}) \in \mathcal{M}(\mathbb{R}^d)$, $f^{-1}(\{-\infty\}) \in \mathcal{M}(\mathbb{R}^d)$, and $f^{-1}(U) \in \mathcal{M}(\mathbb{R}^d)$ for every open $U \subset \mathbb{R}$.
- 2. Let $f: \mathbb{R}^d \to \overline{R}$ be measurable. Show that the collection

$$\mathcal{A} := \{ S \subset \overline{\mathbb{R}} \colon f^{-1}(S) \in \mathcal{M}(\mathbb{R}^d) \},\$$

is a σ -algebra:

- (i) $\emptyset \in \mathcal{A}$.
- (ii) If $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$.

(iii) If
$$\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$$
, then $\bigcup_{n=1}^{\infty}E_n\in\mathcal{A}$.

Moreover, show that \mathcal{A} contains every open subset, closed subset, G_{δ} subset, and F_{σ} subset of \mathbb{R} .

- 3. Let $B \subset \mathbb{R}^d$ be a box, and suppose $f \colon \mathbb{R}^d \to [0, \infty)$ is Riemann integrable over B. Show that the Riemann integral of f over B is equal to $\int_B f \, dm$, the Lebesgue integral of f over B.
- 4. For $f \in L^1(m)$, show $m(\{x : |f(x)| = \infty\}) = 0$.
- 5. (a) Suppose $f \in L^1(\mathbb{R}, m)$ is uniformly continuous. Show that $\lim_{|x| \to \infty} f(x) = 0$.
 - (b) Find a positive, continuous $f \in L^1(\mathbb{R}, m)$ such that $\limsup f(x) = \infty$.
- 6. Let $\delta = (\delta_1, \ldots, \delta_n) \in (0, \infty)^n$. For $f \colon \mathbb{R}^n \to \overline{\mathbb{R}}$, define

$$f^{\delta}(x_1,\ldots,x_n) = f(\delta_1 x_1,\ldots,\delta_n x_n).$$

If $f \in L^1(\mathbb{R}^n, m)$, show that $f^{\delta} \in L^1(\mathbb{R}^n, m)$ with $\int f^{\delta} dm = \delta_1 \cdots \delta_n \int f dm$.

Solutions:

1. (\Longrightarrow) : If f is measurable, then for every open $U \subset \overline{\mathbb{R}}$, $f^{-1}(U) \in \mathcal{M}(\mathbb{R}^d)$. Since $\{\pm\infty\}$ are clopen sets, it follows that $f^{-1}(\{\pm\infty\}) \in \mathcal{M}(\mathbb{R}^d)$. Also, if $U \subset \mathbb{R}$ is open, then, thinking of \mathbb{R} as a subset of $\overline{\mathbb{R}}$, U is open relative to \mathbb{R} . Hence there exists open $U' \subset \overline{\mathbb{R}}$ such that $U = U' \cap \mathbb{R}$. But since \mathbb{R} is open (it is the complement of the closed set $\{-\infty,\infty\}$), this implies U is open in $\overline{\mathbb{R}}$. Hence $f^{-1}(U) \in \mathcal{M}(\mathbb{R}^d)$ by measurability of f.

 (\Leftarrow) : Let $U \subset \mathbb{R}$ be open. Define $U' := U \setminus \{-\infty, \infty\}$, which is open as the finite intersection of open sets $U, \{\infty\}^c$, and $\{-\infty\}^c$. Moreover, $U' \subset \mathbb{R}$ and so $f^{-1}(U') \in \mathcal{M}(\mathbb{R}^d)$ by assumption. Then $f^{-1}(U)$ is $f^{-1}(U')$ possibly unioned with $f^{-1}(\{-\infty\})$ and/or $f^{-1}(\{\infty\})$, depending on whether U contained $\pm \infty$. Since each of these sets is measurable, so is their finite union. Hence $f^{-1}(U) \in \mathcal{M}(\mathbb{R}^d)$, and so f is measurable.

2. By definition measurability, \mathcal{A} contains all open subsets of \mathbb{R} . In particular, $\emptyset \in \mathcal{A}$, and so (i) holds. Property (ii) follows from $f^{-1}(E^c) = f^{-1}(E)^c$, and property (iii) follows from

$$f^{-1}\left(\bigcup_{n=1}^{\infty} E_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(E_n).$$

Now, using (ii), we see that \mathcal{A} also contains all closed sets. Since an F_{σ} set is a countable union of closed sets, (iii) then implies \mathcal{A} contains all F_{σ} sets. Finally, using (ii), \mathcal{A} contains all G_{δ} sets since these are just complements of F_{σ} sets.

3. Let G be a grid on B, and let $\{B_i : i \in I\}$ be the induced subboxes. Observe that

$$U(f,G) = \sum_{i \in I} \left(\sup_{x \in B_i} f(x) \right) |B_i| = \int \sum_{i \in I} \left(\sup_{x \in B_i} f(x) \right) \chi_{B_i} dm.$$

So for the simple function $\psi_U := \sum_{i \in I} (\sup_{x \in B_i} f(x)) \chi_{B_i}$, we have $\int \psi_U dm = U(f, G)$. Similarly, for the simple function $\psi_L := \sum_{i \in I} (\inf_{x \in B_i} f(x)) \chi_{B_i}$, we have $\int \psi_L dm = L(f, G)$. Moreover, $\psi_L \leq f \leq \psi_U$. Thus for any simple function $0 \leq \phi \leq f$, we have by monotonicity of the integral

$$\int \phi \ dm \le \int \psi_U \ dm = U(f,G).$$

Consequently,

$$L(f,G) = \int \psi_L \ dm \le \underbrace{\sup\left\{\int \phi \ dm : 0 \le \phi \le f, \ \phi \ \text{simple}\right\}}_{=\int f \ dm} \le U(f,G).$$

By Riemann integrability of f, taking the letting mesh(G) tends to zero yields the desired equality.

4. Suppose, towards a contradiction, that $m(\{x: |f(x)| = \infty\}) > 0$. Since $\{x: |f(x)| = \infty\}$ is the (disjoint) union of $\{x: f(x) = -\infty\}$ and $\{x: f(x) = \infty\}$, one of these subsets must (by subaddivity) have positive measure. By replacing f with -f, we may assume $m(\{x: f(x) = \infty\}) > 0$. Denote $E := \{x: f(x) = \infty\}$. Then for every R > 0, we have $R\chi_E \leq |f|$. So by monotonicity of the integral we have

$$\int |f| \ dm \ge \int R\chi_E \ dm = Rm(E).$$

Since m(E), letting $R \to \infty$ forces $Rm(E) \to \infty$, contradicting $\int |f| dm < \infty$.

5. (a) Recall that $\lim_{|x|\to\infty} f(x) = 0$ is equivalent to:

 $\forall \epsilon > 0, \exists R > 0$, such that $\forall x \in \mathbb{R}$ with $|x| \ge R, |f(x)| < \epsilon$.

Assume, towards a contradiction, that this is not the case. Then there exists $\epsilon > 0$ such that for all R > 0 there exists $x \in \mathbb{R}$ with $|x| \ge R$ and $|f(x)| \ge \epsilon$. By uniform continuity of f, there exists $\delta > 0$ such that whenever $|x - y| < \delta$ then $|f(x) - f(y)| < \frac{\epsilon}{2}$. In particular, if $|x - y| < \delta$, then we have

$$|f(y)| = |f(x) + f(y) - f(x)| \ge |f(x)| - |f(y) - f(x)| > |f(x)| - \frac{c}{2}.$$

So if $|f(x)| \ge \epsilon$, then $|f(y)| > \frac{\epsilon}{2}$. For $R_1 = 1$, let $x_1 \in \mathbb{R}$ be such that $|x_1| \ge R_1$ and $|f(x_1)| \ge \epsilon$. For $R_2 = |x_1| + 2\delta$, let $x_2 \in \mathbb{R}$ be such that $|x_2| \ge R_2$ and $|f(x_2)| \ge \epsilon$. Observe that $(x_2 - \delta, x_2 + \delta)$ and $(x_1 - \delta, x_1 + \delta)$ are disjoint, and by the above argument we have $|f(y)| > \frac{\epsilon}{2}$ for any y in either interval. Iterating this argument, we produce a sequence $(x_n)_{n\in\mathbb{N}}$ such that the intervals $(x_n - \delta, x_n + \delta)$ are pairwise disjoint and $|f(y)| > \frac{\epsilon}{2}$ for each y in these intervals. Consequently, if we define

$$g_n := \sum_{i=1}^n \frac{\epsilon}{2} \chi_{(x_i - \delta, x_i + \delta)}$$

then $|f| \ge g_n$ for every $n \in \mathbb{N}$. But then

$$\int |f| \, dm \ge \int g_n \, dm = \sum_{i=1}^n \frac{\epsilon}{2} 2\delta = n\epsilon\delta,$$

and letting $n \to \infty$ contradicts $\int |f| dm < \infty$.

(b) Define a continuous function by

$$f(x) := \begin{cases} 2^{3n+1}(x-n) & \text{if } n \le x \le n+2^{-2n-1} \text{ for some } n \in \mathbb{N} \\ -2^{3n+1}(x-n-2^{-2n}) & \text{if } n+2^{-2n-1} < x \le n+2^{-2n} \text{ for some } n \in \mathbb{N}. \\ 0 & \text{otherwise} \end{cases}$$

Then the graph of is x-axis except for a series of disjoint triangles, one contained in each interval [n, n+1] for $n \in \mathbb{N}$ with base length 2^{-2n} and height 2^n . Hence

$$\int f \, dm = \sum_{n=1}^{\infty} \frac{1}{2} 2^{-2n} 2^n = \sum_{n=1}^{\infty} 2^{-n-1} = \frac{1}{2},$$

so that $f \in L^1(\mathbb{R}, m)$. However,

$$\limsup_{x \to \infty} f(x) \ge \limsup_{n \to \infty} f(n + 2^{-2n-1}) = \limsup_{n \to \infty} 2^n = \infty.$$

6. By noting that $(f^{\delta})_{\pm} = (f_{\pm})^{\delta}$, it suffices to assume f is valued in $[0, \infty]$.

We first verify that f^{δ} is measurable. Let $U \subset \mathbb{R}$ be open. Denoting $\frac{1}{\delta} := (\frac{1}{\delta_1}, \ldots, \frac{1}{\delta_n})$, it is easy to see that

$$(f^{\delta})^{-1}(U) = \frac{1}{\delta}f^{-1}(U)$$

where we are using the notation from Exercise 2 of Homework 2. Since f is a measurable function, $E := f^{-1}(U) \in \mathcal{M}(\mathbb{R}^n)$. In particular, E satisfies the Carathéodory condition: for all $X \subset \mathbb{R}^n$

 $m^*(X) = m^*(X \cap E) + m^*(X \cap E^c).$

By Exercise 2 from Homework 2 we then have for all $X \subset \mathbb{R}^n$

$$m^*(\frac{1}{\delta}X) = \delta_1 \cdots \delta_n m^*(X) = \delta_1 \cdots \delta_n m^*(X \cap E) + \delta_1 \cdots \delta_n m^*(X \cap E^c)$$
$$= m^*(\frac{1}{\delta}(X \cap E)) + m^*(\frac{1}{\delta}(X \cap E^c))$$
$$= m^*((\frac{1}{\delta}X) \cap (\frac{1}{\delta}E)) + m^*((\frac{1}{\delta}) \cap (\frac{1}{\delta}E)^c).$$

As X ranges over all subsets \mathbb{R}^n , so does $\frac{1}{\delta}X$, and so the above shows that $\frac{1}{\delta}E = (f^{\delta})^{-1}(U)$ is measurable. Hence f^{δ} is a measurable function.

Now, observe that for any $E \subset \mathcal{M}(\mathbb{R}^n)$, $\chi_E^{\delta} = \chi_{\frac{1}{\delta}E}$. Consider a simple function $\phi = \sum_j a_j \chi_{E_j}$ satisfying $0 \le \phi \le f$. Then clearly $\phi^{\delta} \le f^{\delta}$ and so by Exercise 2 on Homework 10

$$\int f^{\delta} dm \ge \int \phi^{\delta} dm = \int \sum_{j} a_{j} \chi^{\delta}_{E_{j}} dm = \int \sum_{j} a_{j} \chi_{\frac{1}{\delta}E_{j}} dm$$
$$= \sum_{j} a_{j} m(\frac{1}{\delta}E_{j}) = \sum_{j} a_{j} \delta_{1} \cdots \delta_{n} m(E_{j}) = \delta_{1} \cdots \delta_{n} \int \phi dm$$

Taking the supremum over all simple functions $0 \le \phi \le f$ yields $\delta_1 \cdots \delta_n \int f \, dm \le \int f^{\delta} dm$. But then $\int f \, dm = \int (f^{\delta})^{\frac{1}{\delta}} \, dm \ge \frac{1}{\delta_1} \cdots \frac{1}{\delta_n} \int f^{\delta} \, dm$, yielding the desired equality. \Box