Exercises:

1. Let $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$. Show that f is measurable if and only if $f^{-1}(\{\infty\}) \in \mathcal{M}\left(\mathbb{R}^{d}\right), f^{-1}(\{-\infty\}) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$, and $f^{-1}(U) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ for every open $U \subset \mathbb{R}$.
2. Let $f: \mathbb{R}^{d} \rightarrow \bar{R}$ be measurable. Show that the collection

$$
\mathcal{A}:=\left\{S \subset \overline{\mathbb{R}}: f^{-1}(S) \in \mathcal{M}\left(\mathbb{R}^{d}\right)\right\}
$$

is a σ-algebra:
(i) $\emptyset \in \mathcal{A}$.
(ii) If $E \in \mathcal{A}$, then $E^{c} \in \mathcal{A}$.
(iii) If $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{A}$, then $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{A}$.

Moreover, show that \mathcal{A} contains every open subset, closed subset, G_{δ} subset, and F_{σ} subset of $\overline{\mathbb{R}}$.
3. Let $B \subset \mathbb{R}^{d}$ be a box, and suppose $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ is Riemann integrable over B. Show that the Riemann integral of f over B is equal to $\int_{B} f d m$, the Lebesgue integral of f over B.
4. For $f \in L^{1}(m)$, show $m(\{x:|f(x)|=\infty\})=0$.
5. (a) Suppose $f \in L^{1}(\mathbb{R}, m)$ is uniformly continuous. Show that $\lim _{|x| \rightarrow \infty} f(x)=0$.
(b) Find a positive, continuous $f \in L^{1}(\mathbb{R}, m)$ such that $\limsup _{x \rightarrow \infty} f(x)=\infty$.
6. Let $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right) \in(0, \infty)^{n}$. For $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, define

$$
f^{\delta}\left(x_{1}, \ldots, x_{n}\right)=f\left(\delta_{1} x_{1}, \ldots, \delta_{n} x_{n}\right)
$$

If $f \in L^{1}\left(\mathbb{R}^{n}, m\right)$, show that $f^{\delta} \in L^{1}\left(\mathbb{R}^{n}, m\right)$ with $\int f^{\delta} d m=\delta_{1} \cdots \delta_{n} \int f d m$.

Solutions:

1. (\Longrightarrow) : If f is measurable, then for every open $U \subset \overline{\mathbb{R}}, f^{-1}(U) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$. Since $\{ \pm \infty\}$ are clopen sets, it follows that $f^{-1}(\{ \pm \infty\}) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$. Also, if $U \subset \mathbb{R}$ is open, then, thinking of \mathbb{R} as a subset of $\overline{\mathbb{R}}, U$ is open relative to \mathbb{R}. Hence there exists open $U^{\prime} \subset \overline{\mathbb{R}}$ such that $U=U^{\prime} \cap \mathbb{R}$. But since \mathbb{R} is open (it is the complement of the closed set $\{-\infty, \infty\}$), this implies U is open in $\overline{\mathbb{R}}$. Hence $f^{-1}(U) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ by measurability of f.
(\Longleftarrow) : Let $U \subset \overline{\mathbb{R}}$ be open. Define $U^{\prime}:=U \backslash\{-\infty, \infty\}$, which is open as the finite intersection of open sets $U,\{\infty\}^{c}$, and $\{-\infty\}^{c}$. Moreover, $U^{\prime} \subset \mathbb{R}$ and so $f^{-1}\left(U^{\prime}\right) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ by assumption. Then $f^{-1}(U)$ is $f^{-1}\left(U^{\prime}\right)$ possibly unioned with $f^{-1}(\{-\infty\})$ and/or $f^{-1}(\{\infty\})$, depending on whether U contained $\pm \infty$. Since each of these sets is measurable, so is their finite union. Hence $f^{-1}(U) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$, and so f is measurable.
2. By definition measurability, \mathcal{A} contains all open subsets of $\overline{\mathbb{R}}$. In particular, $\emptyset \in \mathcal{A}$, and so (i) holds. Property (ii) follows from $f^{-1}\left(E^{c}\right)=f^{-1}(E)^{c}$, and property (iii) follows from

$$
f^{-1}\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\bigcup_{n=1}^{\infty} f^{-1}\left(E_{n}\right)
$$

Now, using (ii), we see that \mathcal{A} also contains all closed sets. Since an F_{σ} set is a countable union of closed sets, (iii) then implies \mathcal{A} contains all F_{σ} sets. Finally, using (ii), \mathcal{A} contains all G_{δ} sets since these are just complements of F_{σ} sets.
3. Let G be a grid on B, and let $\left\{B_{i}: i \in I\right\}$ be the induced subboxes. Observe that

$$
U(f, G)=\sum_{i \in I}\left(\sup _{x \in B_{i}} f(x)\right)\left|B_{i}\right|=\int \sum_{i \in I}\left(\sup _{x \in B_{i}} f(x)\right) \chi_{B_{i}} d m
$$

So for the simple function $\psi_{U}:=\sum_{i \in I}\left(\sup _{x \in B_{i}} f(x)\right) \chi_{B_{i}}$, we have $\int \psi_{U} d m=U(f, G)$. Similarly, for the simple function $\psi_{L}:=\sum_{i \in I}\left(\inf _{x \in B_{i}} f(x)\right) \chi_{B_{i}}$, we have $\int \psi_{L} d m=L(f, G)$. Moreover, $\psi_{L} \leq f \leq$ ψ_{U}. Thus for any simple function $0 \leq \phi \leq f$, we have by monotonicity of the integral

$$
\int \phi d m \leq \int \psi_{U} d m=U(f, G)
$$

Consequently,

$$
L(f, G)=\int \psi_{L} d m \leq \underbrace{\sup \left\{\int \phi d m: 0 \leq \phi \leq f, \phi \text { simple }\right\}}_{=\int f d m} \leq U(f, G)
$$

By Riemann integrability of f, taking the letting $\operatorname{mesh}(G)$ tends to zero yields the desired equality.
4. Suppose, towards a contradiction, that $m(\{x:|f(x)|=\infty\})>0$. Since $\{x:|f(x)|=\infty\}$ is the (disjoint) union of $\{x: f(x)=-\infty\}$ and $\{x: f(x)=\infty\}$, one of these subsets must (by subaddivity) have positive measure. By replacing f with $-f$, we may assume $m(\{x: f(x)=\infty\})>0$. Denote $E:=\{x: f(x)=\infty\}$. Then for every $R>0$, we have $R \chi_{E} \leq|f|$. So by monotonicity of the integral we have

$$
\int|f| d m \geq \int R \chi_{E} d m=R m(E)
$$

Since $m(E)$, letting $R \rightarrow \infty$ forces $R m(E) \rightarrow \infty$, contradicting $\int|f| d m<\infty$.
5. (a) Recall that $\lim _{|x| \rightarrow \infty} f(x)=0$ is equivalent to:

$$
\forall \epsilon>0, \exists R>0, \text { such that } \forall x \in \mathbb{R} \text { with }|x| \geq R,|f(x)|<\epsilon
$$

Assume, towards a contradiction, that this is not the case. Then there exists $\epsilon>0$ such that for all $R>0$ there exists $x \in \mathbb{R}$ with $|x| \geq R$ and $|f(x)| \geq \epsilon$. By uniform continuity of f, there exists $\delta>0$ such that whenever $|x-y|<\delta$ then $|f(x)-f(y)|<\frac{\epsilon}{2}$. In particular, if $|x-y|<\delta$, then we have

$$
|f(y)|=|f(x)+f(y)-f(x)| \geq|f(x)|-|f(y)-f(x)|>|f(x)|-\frac{\epsilon}{2}
$$

So if $|f(x)| \geq \epsilon$, then $|f(y)|>\frac{\epsilon}{2}$. For $R_{1}=1$, let $x_{1} \in \mathbb{R}$ be such that $\left|x_{1}\right| \geq R_{1}$ and $\left|f\left(x_{1}\right)\right| \geq \epsilon$. For $R_{2}=\left|x_{1}\right|+2 \delta$, let $x_{2} \in \mathbb{R}$ be such that $\left|x_{2}\right| \geq R_{2}$ and $\left|f\left(x_{2}\right)\right| \geq \epsilon$. Observe that ($x_{2}-\delta, x_{2}+\delta$) and $\left(x_{1}-\delta, x_{1}+\delta\right)$ are disjoint, and by the above argument we have $|f(y)|>\frac{\epsilon}{2}$ for any y in either interval. Iterating this argument, we produce a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that the intervals $\left(x_{n}-\delta, x_{n}+\delta\right)$ are pairwise disjoint and $|f(y)|>\frac{\epsilon}{2}$ for each y in these intervals. Consequently, if we define

$$
g_{n}:=\sum_{i=1}^{n} \frac{\epsilon}{2} \chi_{\left(x_{i}-\delta, x_{i}+\delta\right)},
$$

then $|f| \geq g_{n}$ for every $n \in \mathbb{N}$. But then

$$
\int|f| d m \geq \int g_{n} d m=\sum_{i=1}^{n} \frac{\epsilon}{2} 2 \delta=n \epsilon \delta
$$

and letting $n \rightarrow \infty$ contradicts $\int|f| d m<\infty$.
(b) Define a continuous function by

$$
f(x):= \begin{cases}2^{3 n+1}(x-n) & \text { if } n \leq x \leq n+2^{-2 n-1} \text { for some } n \in \mathbb{N} \\ -2^{3 n+1}\left(x-n-2^{-2 n}\right) & \text { if } n+2^{-2 n-1}<x \leq n+2^{-2 n} \text { for some } n \in \mathbb{N} . \\ 0 & \text { otherwise }\end{cases}
$$

Then the graph of is x-axis except for a series of disjoint triangles, one contained in each interval $[n, n+1]$ for $n \in \mathbb{N}$ with base length $2^{-2 n}$ and height 2^{n}. Hence

$$
\int f d m=\sum_{n=1}^{\infty} \frac{1}{2} 2^{-2 n} 2^{n}=\sum_{n=1}^{\infty} 2^{-n-1}=\frac{1}{2}
$$

so that $f \in L^{1}(\mathbb{R}, m)$. However,

$$
\limsup _{x \rightarrow \infty} f(x) \geq \limsup _{n \rightarrow \infty} f\left(n+2^{-2 n-1}\right)=\limsup _{n \rightarrow \infty} 2^{n}=\infty
$$

6. By noting that $\left(f^{\delta}\right)_{ \pm}=\left(f_{ \pm}\right)^{\delta}$, it suffices to assume f is valued in $[0, \infty]$.

We first verify that f^{δ} is measurable. Let $U \subset \mathbb{R}$ be open. Denoting $\frac{1}{\delta}:=\left(\frac{1}{\delta_{1}}, \ldots, \frac{1}{\delta_{n}}\right)$, it is easy to see that

$$
\left(f^{\delta}\right)^{-1}(U)=\frac{1}{\delta} f^{-1}(U)
$$

where we are using the notation from Exercise 2 of Homework 2. Since f is a measurable function, $E:=f^{-1}(U) \in \mathcal{M}\left(\mathbb{R}^{n}\right)$. In particular, E satisfies the Carathéodory condition: for all $X \subset \mathbb{R}^{n}$

$$
m^{*}(X)=m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right)
$$

By Exercise 2 from Homework 2 we then have for all $X \subset \mathbb{R}^{n}$

$$
\begin{aligned}
m^{*}\left(\frac{1}{\delta} X\right) & =\delta_{1} \cdots \delta_{n} m^{*}(X)=\delta_{1} \cdots \delta_{n} m^{*}(X \cap E)+\delta_{1} \cdots \delta_{n} m^{*}\left(X \cap E^{c}\right) \\
& =m^{*}\left(\frac{1}{\delta}(X \cap E)\right)+m^{*}\left(\frac{1}{\delta}\left(X \cap E^{c}\right)\right) \\
& =m^{*}\left(\left(\frac{1}{\delta} X\right) \cap\left(\frac{1}{\delta} E\right)\right)+m^{*}\left(\left(\frac{1}{\delta}\right) \cap\left(\frac{1}{\delta} E\right)^{c}\right) .
\end{aligned}
$$

As X ranges over all subsets \mathbb{R}^{n}, so does $\frac{1}{\delta} X$, and so the above shows that $\frac{1}{\delta} E=\left(f^{\delta}\right)^{-1}(U)$ is measurable. Hence f^{δ} is a measurable function.
Now, observe that for any $E \subset \mathcal{M}\left(\mathbb{R}^{n}\right)$, $\chi_{E}^{\delta}=\chi_{\frac{1}{\delta} E}$. Consider a simple function $\phi=\sum_{j} a_{j} \chi_{E_{j}}$ satisfying $0 \leq \phi \leq f$. Then clearly $\phi^{\delta} \leq f^{\delta}$ and so by Exercise 2 on Homework 10

$$
\begin{aligned}
\int f^{\delta} d m \geq \int \phi^{\delta} d m & =\int \sum_{j} a_{j} \chi_{E_{j}}^{\delta} d m=\int \sum_{j} a_{j} \chi_{\frac{1}{\delta} E_{j}} d m \\
& =\sum_{j} a_{j} m\left(\frac{1}{\delta} E_{j}\right)=\sum_{j} a_{j} \delta_{1} \cdots \delta_{n} m\left(E_{j}\right)=\delta_{1} \cdots \delta_{n} \int \phi d m
\end{aligned}
$$

Taking the supremum over all simple functions $0 \leq \phi \leq f$ yields $\delta_{1} \cdots \delta_{n} \int f d m \leq \int f^{\delta} d m$. But then $\int f d m=\int\left(f^{\delta}\right)^{\frac{1}{\delta}} d m \geq \frac{1}{\delta_{1}} \cdots \frac{1}{\delta_{n}} \int f^{\delta} d m$, yielding the desired equality.

