Exercises:

1. Let $A \subset \mathbb{R}$ satisfy $m^{*}(A)>0$. Show that for every $\alpha \in(0,1)$ there exists an open interval I such that

$$
m^{*}(A \cap I) \geq m^{*}(I)
$$

[Hint: Use the definition of the outer measure to find an open set $U \supset A$ such that $m^{*}(A) \geq \alpha m^{*}(U)$. Then use the fact that every open subset of \mathbb{R} is a countable disjoint union of open intervals.]
2. Let $E \in \mathcal{M}(\mathbb{R})$ with $m(E)>0$. Consider the difference set

$$
D(E):=\{x-y: x, y \in E\}
$$

Show that D contains an open interval centered at the origin.
[Hint: Invoke the previous exercise for $\alpha \in\left(\frac{1}{2}, 1\right)$. Also, for any set S, if $D(S)$ does not contain an open interval centered at the origin, then for all $\delta>0$ the set $(-\delta, \delta) \backslash D(S)$ is non-empty. Think about the relation between S and its translation by an element of $(-\delta, \delta) \backslash D(S)$.]
3. Let $A \subset[0,1]$ be the set of numbers without the digit 4 appearing in their decimal expansion. Show that A is Lebesgue measurable and compute $m(A)$.
[Hint: consider for each $n \in \mathbb{N}$ the set of numbers without the digit 4 appearing in the first n digits of the decimal expansion.]
4. (a) Show that every closed set in \mathbb{R}^{d} is both G_{δ} and F_{σ}.
(b) Show that every open set in \mathbb{R}^{d} is both G_{δ} and F_{σ}.
(c) Show every Riemann measurable set in \mathbb{R}^{d} is Lebesgue measurable.
5. [The Borel-Cantelli Lemma] Suppose $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{M}\left(\mathbb{R}^{d}\right)$ satisfies

$$
\sum_{n=1}^{\infty} m\left(E_{n}\right)<\infty
$$

Consider $E:=\left\{x \in \mathbb{R}^{d}: x \in E_{n}\right.$ for infinitely many $\left.n \in \mathbb{N}\right\}$.
(a) Show that

$$
E=\bigcap_{N=1}^{\infty} \bigcup_{n \geq N} E_{n} .
$$

(b) Show that $E \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ with $m(E)=0$.
(c) Show that

$$
\chi_{E}(x)=\limsup _{n \rightarrow \infty} \chi_{E_{n}}(x) \quad \forall x \in \mathbb{R}^{d}
$$

[Note: for this reason, E is typically denoted $\limsup _{n \rightarrow \infty} E_{n}$.]

Solutions:

1. Fix $\alpha \in(0,1)$. First note that it suffices to assume $m^{*}(A)<\infty$. Indeed, by subaddivity we have

$$
0<m^{*}(A) \leq \sum_{n=1}^{\infty} m^{*}(A \cap[-n, n])
$$

so there exists $n \in \mathbb{N}$ with $m^{*}(A \cap[-n, n])>0$, and note that $m^{*}(A \cap[-n, n]) \leq m^{*}([-n, n])=2 n$. Now, if we find an interval I such that $m^{*}(A \cap[-n, n] \cap I) \geq \alpha m^{*}(I)$, then by monotonicity we have $m^{*}(A \cap I) \geq \alpha m^{*}(I)$. Hence, by replacing A with $A \cap[-n, n]$ if necessary, we may assume $m^{*}(A)<\infty$.
[Alternatively: if $m^{*}(A)=\infty$ then we can simply take $I=\mathbb{R}$.]
Now, for $\epsilon=\left(\frac{1}{\alpha}-1\right) m^{*}(A)$, let $\left\{B_{k}\right\}_{k \in \mathbb{N}}$ be a countable covering of A by open boxes (intervals in this case) satisfying

$$
\sum_{k=1}^{\infty}\left|B_{k}\right| \leq m^{*}(A)+\epsilon
$$

Set $U=\bigcup_{k=1}^{\infty} B_{k}$, the U is open as the union of open sets. By countable subadditivity and our computation of the outer measure of boxes from class we have

$$
m^{*}(U) \leq \sum_{k=1}^{\infty} m^{*}\left(B_{k}\right)=\sum_{k=1}^{\infty}\left|B_{k}\right| \leq m^{*}(A)+\epsilon=m^{*}(A)+\left(\frac{1}{\alpha}-1\right) m^{*}(A)=\frac{1}{\alpha} m^{*}(A)
$$

Hence $m^{*}(A) \geq \alpha m^{*}(U)$. Now, as an open set we can express U as the a countable union of disjoint open intervals: $U=\bigcup_{n=1}^{\infty} I_{n}$. Note that since open sets are measurable we have by countable additivity

$$
\sum_{n=1}^{\infty} m^{*}\left(I_{n}\right)=\sum_{n=1}^{\infty} m\left(I_{n}\right)=m(U)=m^{*}(U)
$$

We claim that there exists $n \in \mathbb{N}$ such that $m^{*}\left(A \cap I_{n}\right) \geq \alpha m^{*}\left(I_{n}\right)$ (in which case the proof is complete). Indeed, if any $m^{*}\left(A \cap I_{n}\right)$ is infinite, then we are done. Otherwise, assume $m^{*}\left(A \cap I_{n}\right)$ is finite and that $m^{*}\left(A \cap I_{n}\right)<\alpha m^{*}\left(I_{n}\right)$ for all $n \in \mathbb{N}$. Consequently

$$
m^{*}(A)=m^{*}(A \cap U)=m^{*}\left(\bigcup_{n=1}^{\infty} A \cap I_{n}\right) \leq \sum_{n=1}^{\infty} m^{*}\left(A \cap I_{n}\right)<\sum_{n=1}^{\infty} \alpha m^{*}\left(I_{n}\right)=\alpha m^{*}(U)
$$

contradicting $m^{*}(A) \geq \alpha m^{*}(U)$.
2. By the same reduction at the beginning of the previous solution, we may assume $m(E)<\infty$. Fix any $\alpha \in\left(\frac{1}{2}, 1\right)$, and note that $0<2 \alpha-1<1$. By the previous exercise, there exists an open interval I such that $m(E \cap I) \geq \alpha m(I)$ (in particular, $m(I)<\infty)$. Set $E_{0}:=E \cap I$, and note that $D\left(E_{0}\right) \subset D(E)$ so that it suffices to show $D\left(E_{0}\right)$ contains an open interval centered at the origin. If this is not the case, then for every $\delta>0$ there exists $a \in(-\delta, \delta) \backslash D\left(E_{0}\right)$. We claim that for such a, E_{0} and $E_{0}+a$ are disjoint. Indeed, if not then there exists $x \in E_{0}$ such that $x=y+a$ for some $y \in E_{0}$. But then $a=x-y \in D\left(E_{0}\right)$, a contradiction. Now, fix such an a for $\delta=(2 \alpha-1) m(I)$, and note that $0<\delta<m(I)$ by our choice of α. Also note that $E_{0} \cup\left(E_{0}+a\right) \subset I \cup(I+a)$. Since $|a|$ is smaller than $m(I)$ (the length of $I), I \cup(I+a)$ is an open interval having length $m(I)+|a|$. Thus, by our choice of I, translation invariance, countable additivity, monotonicity, and our choice of δ (in that order) we have

$$
\begin{aligned}
2 \alpha m(I) & \leq 2 m\left(E_{0}\right)=m\left(E_{0}\right)+m\left(E_{0}+a\right)=m\left(E_{0} \cup\left(E_{0}+a\right)\right) \\
& \leq m(I \cup(I+a))=m(I)+|a|<m(I)+(2 \alpha-1) m(I)=2 \alpha m(I)
\end{aligned}
$$

(note that we are using $m(I)<\infty$ here) a contradiction. Thus $D\left(E_{0}\right)$ must contain an open interval centered at the origin, and consequently so must $D(E)$.
3. For $n \in \mathbb{N}$ and digits $a_{1}, \ldots, a_{n} \in\{0,1,2, \ldots, 9\}$, observe that the half-open interval $I\left(a_{1}, \ldots, a_{n}\right):=$ $\left[0 . a_{1} a_{2} \cdots a_{n}, 0 . a_{1} a_{2} \cdots\left(a_{n}+1\right)\right)$ is the set of numbers in $[0,1]$ whose decimal expansion begins with $a_{1} a_{2} \cdots a_{n}$. Furthermore, as a half-open interval it is measurable with

$$
m\left(I\left(a_{1}, \ldots, a_{n}\right)\right)=\frac{1}{10^{n}}
$$

Also note that for any distinct choice of digits b_{1}, \ldots, b_{n} we have $I\left(a_{1}, \ldots, a_{n}\right) \cap I\left(b_{1}, \ldots, b_{n}\right)=\emptyset$. Now, define $A_{n} \subset[0,1]$ to be the set numbers without the digit 4 appearing in the first n-digits of its decimal expansion. Then

$$
A_{n}=\bigcup_{a_{1}, \ldots, a_{n} \neq 4} I\left(a_{1}, \ldots, a_{n}\right)
$$

and so A_{n} is measurable as a finite union of measurable sets. Moreover, there are 9^{n} choices for a_{1}, \ldots, a_{n} which avoid the digit 4 . Therefore

$$
m\left(A_{n}\right)=\sum_{a_{1}, \ldots, a_{n} \neq 4} m\left(I\left(a_{1}, \ldots, a_{n}\right)\right)=\sum_{a_{1}, \ldots, a_{n} \neq 4} \frac{1}{10^{n}}=\frac{9^{n}}{10^{n}}
$$

Finally, we note that $A_{1} \supset A_{2} \supset \cdots$ and the intersection of these sets is precisely A. Hence A is measurable as the countable intersection of measurable sets, and by continuity from above (note that $\left.m\left(A_{1}\right)<\infty\right)$ we have

$$
m(A)=m\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)=\lim _{n \rightarrow \infty} \frac{9^{n}}{10^{n}}=0
$$

4. (a) Let $V \subset \mathbb{R}^{d}$ be closed. Then V is the countable union of closed sets (namely the union over the collection containing just V), and so V is an F_{σ} set. To see that V is a G_{δ} set, defined for each $n \in \mathbb{N}$,

$$
U_{n}:=\bigcup_{x \in V} B\left(x, \frac{1}{n}\right)
$$

Then U_{n} is an open set containing V. Suppose $y \in U_{n}$ for all $n \in \mathbb{N}$. Fix $r>0$ and let $n \in \mathbb{N}$ be such that $\frac{1}{n}<r$. Since $y \in U_{n}$, there exists $x \in V$ with $y \in B\left(x, \frac{1}{n}\right)$, but this also implies $x \in B\left(y, \frac{1}{n}\right) \subset B(y, r)$. Thus $B(y, r) \cap V \neq \emptyset$. Since $r>0$ was arbitrary, this shows $y \in \bar{V}=V$. Hence we have shown

$$
\bigcap_{n=1}^{\infty} U_{n} \subset V,
$$

while the other inclusion is immediate. Thus V is the countable intersection of open sets and therefore is a G_{δ} set.
(b) Let $U \subset \mathbb{R}^{d}$ be open. Then U^{c} is closed and so by part (a) is both an G_{δ} set and an F_{σ} set. Thus its complement, U is an F_{σ} set and an G_{δ} set.
(c) Let $S \subset \mathbb{R}^{d}$ be Riemann measurable. Then its interior $F:=S^{\circ}$ is an F_{σ} set by part (b), and its closure $G:=\bar{S}$ is a G_{δ} set by part (a). Since S is Riemann measurable, its boundary $\partial S=\bar{S} \backslash S^{\circ}$ is a zero set. Thus we have found an F_{σ} set F and an G_{δ} set G satisfying $F \subset S \subset G$ and $m(G \backslash F)=m(\partial S)=0$. By a result from lecture this implies S is Lebesgue measurable.
5. (a) Let $x \in E$. Since $x \in E_{n}$ for infinitely many $n \in \mathbb{N}$, for all $N \in \mathbb{N}$ there exists $n \geq N$ such that $x \in E_{n}$. This implies that for all $N \in \mathbb{N}, x \in \bigcup_{n \geq N} E_{n}$. Hence $x \in \bigcap_{N=1}^{\infty} \bigcup_{n \geq N} E_{n}$. Conversely, suppose $x \in \bigcap_{N=1}^{\infty} \bigcup_{n \geq N} E_{n}$. Consequently, for all $N \geq N$ we have $x \in \bigcup_{n \geq N} E_{n}$. For $N=1$, let $n_{1} \geq 1$ be such that $x \in E_{n_{1}}$. For $N=n_{1}+1$, let $n_{2} \geq n_{1}+1$ be such that $x \in E_{n_{2}}$. Continuiing in this way, we can demonstrate that $x \in E_{n}$ for infinitely many $n \in \mathbb{N}$. Thus the claimed equality holds.
(b) For each $N \in \mathbb{N}, \bigcup_{n \geq N} E_{n} \in \mathcal{M}$ as the countable union of measurable sets. Then $E \in \mathcal{M}$ as the countable intersection of measurable sets. Now, for each $N \in \mathbb{N}$ define $F_{n}:=\bigcup_{n \geq N} E_{n}$. Then $F_{1} \supset F_{2} \supset \cdots$ and by countable subadditivity we have

$$
m\left(F_{1}\right) \leq \sum_{n=1}^{\infty} m\left(E_{n}\right),
$$

which is finite by assumption. Thus, by continuity from above we have

$$
m(E)=m\left(\bigcap_{N=1}^{\infty} F_{N}\right)=\lim _{N \rightarrow \infty} m\left(F_{N}\right) \leq \lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} m\left(E_{n}\right)
$$

This last limit is zero since the tail of a convergent series tends to zero. Thus $m(E)=0$.
(c) Let $x \in \mathbb{R}^{d}$. For $N \in \mathbb{N}$, we note that $\sup \left\{\chi_{E_{n}}(x): n \geq N\right\}$ is 1 if $x \in \bigcup_{n \geq N} E_{n}$ and is zero otherwise. Thus if $x \in E$, then by part (b) we have

$$
\lim _{N \rightarrow \infty} \sup \left\{\chi_{E_{n}}(x): n \geq N\right\}=1=\chi_{E}(x)
$$

If $x \notin E$, then there exists $N \in \mathbb{N}$ such that $x \notin \bigcup_{n \geq N} E_{n}$. Note that this implies $x \notin \bigcup_{n \geq M} E_{n}$ for any $M \geq N$. Hence

$$
\lim _{N \rightarrow \infty} \sup \left\{\chi_{E_{n}}(x): n \geq N\right\}=0=\chi_{E}(x)
$$

