
Math 105 Homework 11 Solutions 4/18/2018

Exercises:

1. Let A ⊂ R satisfy m∗(A) > 0. Show that for every α ∈ (0, 1) there exists an open interval I such that

m∗(A ∩ I) ≥ m∗(I)

[Hint: Use the definition of the outer measure to find an open set U ⊃ A such that m∗(A) ≥ αm∗(U).
Then use the fact that every open subset of R is a countable disjoint union of open intervals.]

2. Let E ∈M(R) with m(E) > 0. Consider the difference set

D(E) := {x− y : x, y ∈ E}.

Show that D contains an open interval centered at the origin.

[Hint: Invoke the previous exercise for α ∈ ( 1
2 , 1). Also, for any set S, if D(S) does not contain an

open interval centered at the origin, then for all δ > 0 the set (−δ, δ)\D(S) is non-empty. Think about
the relation between S and its translation by an element of (−δ, δ) \D(S).]

3. Let A ⊂ [0, 1] be the set of numbers without the digit 4 appearing in their decimal expansion. Show
that A is Lebesgue measurable and compute m(A).

[Hint: consider for each n ∈ N the set of numbers without the digit 4 appearing in the first n digits
of the decimal expansion.]

4. (a) Show that every closed set in Rd is both Gδ and Fσ.

(b) Show that every open set in Rd is both Gδ and Fσ.

(c) Show every Riemann measurable set in Rd is Lebesgue measurable.

5. [The Borel–Cantelli Lemma] Suppose {En}n∈N ⊂M(Rd) satisfies

∞∑
n=1

m(En) <∞.

Consider E := {x ∈ Rd : x ∈ En for infinitely many n ∈ N}.

(a) Show that

E =

∞⋂
N=1

⋃
n≥N

En.

(b) Show that E ∈M(Rd) with m(E) = 0.

(c) Show that
χE(x) = lim sup

n→∞
χEn

(x) ∀x ∈ Rd

[Note: for this reason, E is typically denoted lim sup
n→∞

En.]

———————————————————————————————————————————–

Solutions:

1. Fix α ∈ (0, 1). First note that it suffices to assume m∗(A) <∞. Indeed, by subaddivity we have

0 < m∗(A) ≤
∞∑
n=1

m∗(A ∩ [−n, n]),

so there exists n ∈ N with m∗(A ∩ [−n, n]) > 0, and note that m∗(A ∩ [−n, n]) ≤ m∗([−n, n]) = 2n.
Now, if we find an interval I such that m∗(A ∩ [−n, n] ∩ I) ≥ αm∗(I), then by monotonicity we have
m∗(A∩I) ≥ αm∗(I). Hence, by replacing A with A∩ [−n, n] if necessary, we may assume m∗(A) <∞.
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[Alternatively: if m∗(A) =∞ then we can simply take I = R.]

Now, for ε = ( 1
α − 1)m∗(A), let {Bk}k∈N be a countable covering of A by open boxes (intervals in this

case) satisfying
∞∑
k=1

|Bk| ≤ m∗(A) + ε.

Set U =

∞⋃
k=1

Bk, the U is open as the union of open sets. By countable subadditivity and our compu-

tation of the outer measure of boxes from class we have

m∗(U) ≤
∞∑
k=1

m∗(Bk) =

∞∑
k=1

|Bk| ≤ m∗(A) + ε = m∗(A) + (
1

α
− 1)m∗(A) =

1

α
m∗(A).

Hence m∗(A) ≥ αm∗(U). Now, as an open set we can express U as the a countable union of disjoint

open intervals: U =

∞⋃
n=1

In. Note that since open sets are measurable we have by countable additivity

∞∑
n=1

m∗(In) =

∞∑
n=1

m(In) = m(U) = m∗(U).

We claim that there exists n ∈ N such that m∗(A∩In) ≥ αm∗(In) (in which case the proof is complete).
Indeed, if any m∗(A ∩ In) is infinite, then we are done. Otherwise, assume m∗(A ∩ In) is finite and
that m∗(A ∩ In) < αm∗(In) for all n ∈ N. Consequently

m∗(A) = m∗(A ∩ U) = m∗

( ∞⋃
n=1

A ∩ In

)
≤
∞∑
n=1

m∗(A ∩ In) <

∞∑
n=1

αm∗(In) = αm∗(U),

contradicting m∗(A) ≥ αm∗(U). �

2. By the same reduction at the beginning of the previous solution, we may assume m(E) <∞. Fix any
α ∈ ( 1

2 , 1), and note that 0 < 2α−1 < 1. By the previous exercise, there exists an open interval I such
that m(E ∩ I) ≥ αm(I) (in particular, m(I) < ∞). Set E0 := E ∩ I, and note that D(E0) ⊂ D(E)
so that it suffices to show D(E0) contains an open interval centered at the origin. If this is not the
case, then for every δ > 0 there exists a ∈ (−δ, δ) \D(E0). We claim that for such a, E0 and E0 + a
are disjoint. Indeed, if not then there exists x ∈ E0 such that x = y + a for some y ∈ E0. But
then a = x − y ∈ D(E0), a contradiction. Now, fix such an a for δ = (2α − 1)m(I), and note that
0 < δ < m(I) by our choice of α. Also note that E0 ∪ (E0 + a) ⊂ I ∪ (I + a). Since |a| is smaller than
m(I) (the length of I), I ∪ (I + a) is an open interval having length m(I) + |a|. Thus, by our choice
of I, translation invariance, countable additivity, monotonicity, and our choice of δ (in that order) we
have

2αm(I) ≤ 2m(E0) = m(E0) +m(E0 + a) = m(E0 ∪ (E0 + a))

≤ m(I ∪ (I + a)) = m(I) + |a| < m(I) + (2α− 1)m(I) = 2αm(I),

(note that we are using m(I) < ∞ here) a contradiction. Thus D(E0) must contain an open interval
centered at the origin, and consequently so must D(E). �

3. For n ∈ N and digits a1, . . . , an ∈ {0, 1, 2, . . . , 9}, observe that the half-open interval I(a1, . . . , an) :=
[0.a1a2 · · · an, 0.a1a2 · · · (an + 1)) is the set of numbers in [0, 1] whose decimal expansion begins with
a1a2 · · · an. Furthermore, as a half-open interval it is measurable with

m(I(a1, . . . , an)) =
1

10n
.
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Also note that for any distinct choice of digits b1, . . . , bn we have I(a1, . . . , an) ∩ I(b1, . . . , bn) = ∅.
Now, define An ⊂ [0, 1] to be the set numbers without the digit 4 appearing in the first n-digits of its
decimal expansion. Then

An =
⋃

a1,...,an 6=4

I(a1, . . . , an)

and so An is measurable as a finite union of measurable sets. Moreover, there are 9n choices for
a1, . . . , an which avoid the digit 4. Therefore

m(An) =
∑

a1,...,an 6=4

m(I(a1, . . . , an)) =
∑

a1,...,an 6=4

1

10n
=

9n

10n
.

Finally, we note that A1 ⊃ A2 ⊃ · · · and the intersection of these sets is precisely A. Hence A is
measurable as the countable intersection of measurable sets, and by continuity from above (note that
m(A1) <∞) we have

m(A) = m

( ∞⋂
n=1

An

)
= lim
n→∞

m(An) = lim
n→∞

9n

10n
= 0.

�

4. (a) Let V ⊂ Rd be closed. Then V is the countable union of closed sets (namely the union over the
collection containing just V ), and so V is an Fσ set. To see that V is a Gδ set, defined for each
n ∈ N,

Un :=
⋃
x∈V

B(x,
1

n
).

Then Un is an open set containing V . Suppose y ∈ Un for all n ∈ N. Fix r > 0 and let n ∈ N
be such that 1

n < r. Since y ∈ Un, there exists x ∈ V with y ∈ B(x, 1
n ), but this also implies

x ∈ B(y, 1
n ) ⊂ B(y, r). Thus B(y, r) ∩ V 6= ∅. Since r > 0 was arbitrary, this shows y ∈ V = V .

Hence we have shown
∞⋂
n=1

Un ⊂ V,

while the other inclusion is immediate. Thus V is the countable intersection of open sets and
therefore is a Gδ set. �

(b) Let U ⊂ Rd be open. Then U c is closed and so by part (a) is both an Gδ set and an Fσ set. Thus
its complement, U is an Fσ set and an Gδ set. �

(c) Let S ⊂ Rd be Riemann measurable. Then its interior F := S◦ is an Fσ set by part (b), and its
closure G := S is a Gδ set by part (a). Since S is Riemann measurable, its boundary ∂S = S \S◦
is a zero set. Thus we have found an Fσ set F and an Gδ set G satisfying F ⊂ S ⊂ G and
m(G \ F ) = m(∂S) = 0. By a result from lecture this implies S is Lebesgue measurable. �

5. (a) Let x ∈ E. Since x ∈ En for infinitely many n ∈ N, for all N ∈ N there exists n ≥ N such that

x ∈ En. This implies that for all N ∈ N, x ∈
⋃
n≥N En. Hence x ∈

∞⋂
N=1

⋃
n≥N

En. Conversely,

suppose x ∈
⋂∞
N=1

⋃
n≥N En. Consequently, for all N ≥ N we have x ∈

⋃
n≥N En. For N = 1, let

n1 ≥ 1 be such that x ∈ En1
. For N = n1 + 1, let n2 ≥ n1 + 1 be such that x ∈ En2

. Continuiing
in this way, we can demonstrate that x ∈ En for infinitely many n ∈ N. Thus the claimed equality
holds. �

(b) For each N ∈ N,
⋃
n≥N En ∈ M as the countable union of measurable sets. Then E ∈ M as the

countable intersection of measurable sets. Now, for each N ∈ N define Fn :=
⋃
n≥N En. Then

F1 ⊃ F2 ⊃ · · · and by countable subadditivity we have

m(F1) ≤
∞∑
n=1

m(En),
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which is finite by assumption. Thus, by continuity from above we have

m(E) = m

( ∞⋂
N=1

FN

)
= lim
N→∞

m(FN ) ≤ lim
N→∞

∞∑
n=N

m(En).

This last limit is zero since the tail of a convergent series tends to zero. Thus m(E) = 0. �

(c) Let x ∈ Rd. For N ∈ N, we note that sup{χEn
(x) : n ≥ N} is 1 if x ∈

⋃
n≥N En and is zero

otherwise. Thus if x ∈ E, then by part (b) we have

lim
N→∞

sup{χEn
(x) : n ≥ N} = 1 = χE(x).

If x 6∈ E, then there exists N ∈ N such that x 6∈
⋃
n≥N En. Note that this implies x 6∈

⋃
n≥M En

for any M ≥ N . Hence
lim
N→∞

sup{χEn(x) : n ≥ N} = 0 = χE(x).

�
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