Exercises:

1. Let U and V be open subsets.
(a) For $T: U \rightarrow V$ be a smooth map, show that the pullback

$$
T^{*}: \Omega^{k}(V) \rightarrow \Omega^{k}(U)
$$

satisfies $T^{*}\left(Z^{k}(V)\right) \subset Z^{k}(U)$ and $T^{*}\left(B^{k}(V)\right) \subset T^{*}\left(B^{k}(U)\right)$.
(b) Prove that if U and V are diffeomorphic, then $H^{k}(U) \cong H^{k}(V)$ as vector spaces.
2. Let $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right) \in(0, \infty)^{n}$. For $A \subset \mathbb{R}^{n}$, define

$$
\delta A:=\left\{\left(\delta_{1} x_{1}, \ldots, \delta_{n} x_{n}\right):\left(x_{1}, \ldots, x_{n}\right) \in A\right\} .
$$

Show that $m^{*}(\delta A)=\delta_{1} \cdots \delta_{n} m^{*}(A)$.
3. For $A \subset \mathbb{R}^{n}$, the Jordan content of A is the quantity

$$
J^{*}(A):=\inf \left\{\sum_{k=1}^{N}\left|B_{k}\right|: N<\infty, A \subset \bigcup_{k=1}^{N} B_{k}, B_{k} \text { open boxes }\right\}
$$

That is, in contrast with the outer measure, here the infimum is taken over finite coverings of A by open boxes.
(a) Show that $m^{*}(A) \leq J^{*}(A)$ for all $A \subset \mathbb{R}^{n}$.
(b) Show that for any subset $A \subset \mathbb{R}^{n}, J^{*}(A)=J^{*}(\bar{A})$.
(c) Find a subset $A \subset \mathbb{R}$ such that $m^{*}(A)<J^{*}(A)$.
4. Let $S \subset \mathbb{R}^{2}$ be Riemann measurable. Show that $|S|=m^{*}(S)=J^{*}(S)$.
[Hint: first show you can replace S by \bar{S}, then take advantage of compactness.]
5. [Not Collected] Consider the triangle

$$
T:=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq x \leq 1\right\}
$$

Convince yourself that computing $m^{*}(T)=\frac{1}{2}$ directly from the definition of the outer measure is hard. [Note: the easy way to show this is by using Exercise 4 and Fubini's theorem.]

Solutions:

1. (a) Suppose $\omega \in Z^{k}(V)$, so that by definition $d \omega=0$. Since pullbacks commute with the exterior derivative, we have

$$
d\left(T^{*} \omega\right)=T^{*}(d \omega)=0
$$

Thus $T^{*} \omega \in Z^{k}(U)$. If $\omega \in B^{k}(V)$, then there exists $\alpha \in \Omega^{k}(V)$ with $d \alpha=\omega$. We then have

$$
T^{*} \omega=T^{*}(d \alpha)=d\left(T^{*} \alpha\right)
$$

Hence $T^{*} \omega \in B^{k}(U)$.
(b) Let $T: U \rightarrow V$ be a diffeomorphism. By part (a),

$$
T^{*}\left(Z^{k}(V)\right) \subset Z^{k}(U)
$$

Moreover, for any $\beta \in Z^{k}(U)$ we have (again by part (a)), that $\left(T^{-1}\right)^{*}(\beta) \in Z^{k}(V)$ and hence

$$
T^{*}\left(\left(T^{-1}\right)^{*}(\beta)\right)=\left(T \circ T^{-1}\right)^{*}(\beta)=i d^{*} \beta=\beta
$$

Thus $T^{*}\left(Z^{k}(V)\right)=Z^{k}(U)$. Similarly $T^{*}\left(B^{k}(V)\right)=B^{k}(U)$ and $\left(T^{-1}\right)^{*}\left(B^{k}(U)\right)=B^{k}(V)$.
Now, consider the (potentially ill-defined) map

$$
\Psi: H^{k}(V) \ni \omega+B^{k}(V) \mapsto T^{*}(\omega)+B^{k}(U) \in H^{k}(U)
$$

which we note is linear since T^{*} is linear. We will show that Ψ is a vector space isomorphism by checking it is (i) well-defined, (ii) injective, and (iii) surjective.
(i) Suppose $\alpha, \beta \in Z^{k}(V)$ satisfy $\alpha+B^{k}(V)=\beta+B^{k}(V)$. We need to show they have the same image under Ψ. The equality of these cosets implies $\alpha-\beta \in B^{k}(V)$, and so $T^{*}(\alpha)-T^{*}(\beta)=$ $T^{*}(\alpha-\beta) \in B^{k}(U)$ by the first part of our proof. But then

$$
\Psi\left(\alpha+B^{k}(V)\right)=T^{*}(\alpha)+B^{k}(U)=T^{*}(\beta)+B^{k}(U)=\Psi\left(\beta+B^{k}(V)\right)
$$

Thus Ψ is well-defined.
(ii) If $\Psi\left(\alpha+B^{k}(V)\right)=\Psi\left(\beta+B^{k}(V)\right)$ for $\alpha, \beta \in Z^{k}(V)$, then $T^{*}(\alpha)+B^{k}(U)=T^{*}(\beta)+B^{k}(U)$ so that $T^{*}(\alpha-\beta)=T^{*}(\alpha)-T^{*}(\beta) \in B^{k}(U)$. But then the first part of our proof implies $\alpha-\beta \in B^{k}(V)$. Thus $\alpha+B^{k}(V)=\beta+B^{k}(V)$, and so Ψ is injective.
(iii) This follows immediately from $T^{*}\left(Z^{k}(V)\right)=Z^{k}(U)$.

Thus $H^{k}(V) \cong H^{k}(U)$ via the vector space isomorphism Ψ.
2. First observe that for any open box $B=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right) \subset \mathbb{R}^{n}$, we have

$$
\delta B=\left(\delta_{1} a_{1}, \delta_{1} b_{1}\right) \times \cdots \times\left(\delta_{n} a_{n}, \delta_{n} b_{n}\right) .
$$

Thus $|\delta B|=\delta_{1} \cdots \delta_{n}|B|$. Now, if $\left\{B_{k}\right\}_{k \in \mathbb{N}}$ is a countable collection of open boxes that covers A, then $\left\{\delta B_{k}\right\}_{k \in \mathbb{N}}$ is a countable collection of open boxes. Furthermore, it covers δA. Indeed, every element of δA is of the form $\left(\delta_{1} x_{1}, \ldots, \delta_{n} x_{n}\right)$ for some $\left(x_{1}, \ldots, x_{n}\right) \in A$. There exists some k such that $\left(x_{1}, \ldots, x_{n}\right) \in B_{k}$ and hence $\left(\delta_{1} x_{1}, \ldots, \delta_{n} x_{n}\right) \in \delta B_{k}$. This implies

$$
m^{*}(\delta A) \leq \sum_{k=1}^{\infty}\left|\delta B_{k}\right|=\delta_{1} \cdots \delta_{n} \sum_{k=1}^{\infty}\left|B_{k}\right|
$$

Since this holds for all countable coverings of A by open boxes, we obtain $m^{*}(\delta A) \leq m^{*}(A)$. The reverse inequality holds by considering $A^{\prime}:=\delta A, \delta^{\prime}=\left(\delta_{1}^{-1}, \ldots, \delta_{n}^{-1}\right)$, and $\delta^{\prime} A^{\prime}$.
3. (a) Since every finite covering of A by open boxes is in particular a countable covering, we immediately have $m^{*}(A) \leq J^{*}(A)$.
(b) Since $A \subset \bar{A}$, any covering of \bar{A} by finitely many open boxes is a covering for A. Hence $J^{*}(A) \leq$ $J^{*}(\bar{A})$. To see the reverse inequality let $\epsilon>0$. Let $\left\{B_{1}, \ldots, B_{N}\right\}$ be a finite collection of open boxes covering A. Observe that

$$
\bigcup_{k=1}^{N} \overline{B_{k}}
$$

is a closed set (as a finite union of closed sets) containing A. Hence \bar{A} is contained in the above union. For each $k=1, \ldots, N$, if

$$
B_{k}=\left(a_{1}, b_{1}\right) \times \cdots \otimes\left(a_{n}, b_{n}\right)
$$

define B_{k}^{\prime} to be the dilation of B_{k} about its center point $\left(\frac{a_{1}+b_{1}}{2}, \ldots, \frac{a_{n}+b_{n}}{2}\right)$ by a factor of $(1+\epsilon)$. That is,

$$
\begin{aligned}
B_{k}^{\prime}:= & \left(\frac{a_{1}+b_{1}}{2}-(1+\epsilon) \frac{b_{1}-a_{1}}{2}, \frac{a_{1}+b_{1}}{2}+(1+\epsilon) \frac{b_{1}-a_{1}}{2}\right) \times \cdots \\
& \cdots \times\left(\frac{a_{n}+b_{n}}{2}-(1+\epsilon) \frac{b_{n}-a_{n}}{2}, \frac{a_{n}+b_{n}}{2}+(1+\epsilon) \frac{b_{n}-a_{n}}{2}\right) .
\end{aligned}
$$

Then $\left|B_{k}^{\prime}\right|=(1+\epsilon)^{n}\left|B_{k}\right|$. Also, $\overline{B_{k}} \subset B_{k}^{\prime}$ so that

$$
\bigcup_{k=1}^{N} B_{k}^{\prime} \supset \bigcup_{k=1}^{N} \overline{B_{k}} \supset \bar{A}
$$

Hence

$$
J^{*}(\bar{A}) \leq \sum_{k=1}^{N}\left|B_{k}^{\prime}\right|=(1+\epsilon) \sum_{k=1}^{N}\left|B_{k}\right|
$$

Since $\left\{B_{1}, \ldots, B_{N}\right\}$ was an arbitrary finite covering of A by open boxes, we obtain $J^{*}(\bar{A}) \leq$ $(1+\epsilon) J^{*}(A)$. Since $\epsilon>0$ was arbitrary, we have $J^{*}(\bar{A}) \leq J^{*}(A)$, which establishes the claimed equality.
(c) Let $A=\mathbb{Q} \cap[0,1]$. Then A is a countable set, hence a zero set: $m^{*}(A)=0$. On the other hand, by part (b) we have

$$
J^{*}(A)=J^{*}(\bar{A})=J^{*}([0,1])
$$

One can argue directly from the definition of the Jordan content that $J^{*}([0,1])=1$, but here simply appeal to Exercise 4 and note $J^{*}([0,1])=|[0,1]|=1$. Thus $J^{*}(A)=1>0=m^{*}(A)$.
4. We first note that we may assume S is closed by replacing S by \bar{S} is necessary. Indeed, by part (b) of the previous exercise we have $J^{*}(S)=J^{*}(\bar{S})$. Also, since S is Riemann measurable, ∂S is a zero set. Hence by subadditivity and monotonicity of the outer measure we have

$$
m^{*}(\bar{S})=m^{*}(S \cup \partial S) \leq m^{*}(S)+m^{*}(\partial S)=m^{*}(S) \leq m^{*}(\bar{S})
$$

so that $m^{*}(S)=m^{*}(\bar{S})$. Finally, we have

$$
\partial \bar{S}=\bar{S} \backslash(\bar{S})^{\circ} \subset \bar{S} \backslash S^{\circ}=\partial S
$$

so that $m^{*}(\partial \bar{S})=0$, which means \bar{S} is Riemann measurable. Since $\chi_{\bar{S}}$ and χ_{S} agree everywhere except possibly on ∂S, a zero set, we have

$$
|\bar{S}|=\int \chi_{\bar{S}}=\int \chi_{S}=|S|
$$

by Exercise 3 on Homework 6 . Hence all concerned quantities are unchanged when we replace S by \bar{S} and so we may assume S is closed.
We will prove the following series of inequalities:

$$
|S| \leq m^{*}(S) \leq J^{*}(S) \leq|S|
$$

Let $\left\{B_{k}\right\}_{k \in \mathbb{N}}$ be an countable covering of S by open boxes. Since S is bounded (it is Riemann measurable) and closed, it is compact by the Heine-Borel theorem. Hence we can reduce this open covering to a finite one: $\left\{B_{k_{1}}, \ldots, B_{k_{N}}\right\}$. We then have by monotonicity of the Riemann integral that

$$
|S|=\int \chi_{S} \leq \int \sum_{i=1}^{N} \chi_{B_{k_{i}}}=\sum_{i=1}^{N}\left|B_{k_{i}}\right| \leq \sum_{k=1}^{\infty}\left|B_{k}\right|
$$

Since this holds for any countable covering $\left\{B_{k}\right\}_{k \in \mathbb{N}}$, we have $|S| \leq m^{*}(S)$. Next, the inequality $m^{*}(S) \leq J *(S)$ follows from part (a) of the previous exercise. Finally, $\epsilon>0$, let $R \subset \mathbb{R}^{2}$ be a rectangle containing S, and let G be a grid with $\operatorname{mesh}(G)$ small enough so that

$$
U\left(\chi_{S}, G\right) \leq \int \chi_{S}+\epsilon=|S|+\epsilon
$$

Let R_{1}, \ldots, R_{N} be the subrectangles of R from the grid G which intersect S. Then $S \subset \bigcup_{k=1}^{N} R_{k}$ and

$$
U\left(\chi_{S}, G\right)=\sum_{k=1}^{N} 1 \cdot\left|R_{k}\right|
$$

To relate this to $J^{*}(S)$, we must replace these closed subrectangles by open rectangles. For each $k=1, \ldots, N$, define B_{k} to be the interior of the dilation of R_{k} about its center point by a factor of $(1+\epsilon)$. Then each B_{k} is an open rectangle containing R_{k} with $\left|B_{k}\right|=(1+\epsilon)\left|R_{k}\right|$. Hence $\left\{B_{1}, \ldots, B_{k}\right\}$ is a finite covering of S by open rectangles and so

$$
J^{*}(S) \leq \sum_{k=1}^{N}\left|B_{k}\right|=(1+\epsilon) \sum_{k=1}^{N}\left|R_{k}\right| \leq(1+\epsilon)(|S|+\epsilon) .
$$

Letting $\epsilon \rightarrow 0$ yields the final inequality and hence the desired equalities.

