
Math 105 Homework 10 Solutions 4/11/2018

Exercises:

1. Let U and V be open subsets.

(a) For T : U → V be a smooth map, show that the pullback

T ∗ : Ωk(V )→ Ωk(U)

satisfies T ∗(Zk(V )) ⊂ Zk(U) and T ∗(Bk(V )) ⊂ T ∗(Bk(U)).

(b) Prove that if U and V are diffeomorphic, then Hk(U) ∼= Hk(V ) as vector spaces.

2. Let δ = (δ1, . . . , δn) ∈ (0,∞)n. For A ⊂ Rn, define

δA := {(δ1x1, . . . , δnxn) : (x1, . . . , xn) ∈ A}.

Show that m∗(δA) = δ1 · · · δnm∗(A).

3. For A ⊂ Rn, the Jordan content of A is the quantity

J∗(A) := inf

{
N∑

k=1

|Bk| : N <∞, A ⊂
N⋃

k=1

Bk, Bk open boxes

}
.

That is, in contrast with the outer measure, here the infimum is taken over finite coverings of A by
open boxes.

(a) Show that m∗(A) ≤ J∗(A) for all A ⊂ Rn.

(b) Show that for any subset A ⊂ Rn, J∗(A) = J∗(A).

(c) Find a subset A ⊂ R such that m∗(A) < J∗(A).

4. Let S ⊂ R2 be Riemann measurable. Show that |S| = m∗(S) = J∗(S).

[Hint: first show you can replace S by S, then take advantage of compactness.]

5. [Not Collected] Consider the triangle

T := {(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ 1}.

Convince yourself that computing m∗(T ) = 1
2 directly from the definition of the outer measure is hard.

[Note: the easy way to show this is by using Exercise 4 and Fubini’s theorem.]

———————————————————————————————————————————–

Solutions:

1. (a) Suppose ω ∈ Zk(V ), so that by definition dω = 0. Since pullbacks commute with the exterior
derivative, we have

d(T ∗ω) = T ∗(dω) = 0.

Thus T ∗ω ∈ Zk(U). If ω ∈ Bk(V ), then there exists α ∈ Ωk(V ) with dα = ω. We then have

T ∗ω = T ∗(dα) = d(T ∗α).

Hence T ∗ω ∈ Bk(U). �

(b) Let T : U → V be a diffeomorphism. By part (a),

T ∗(Zk(V )) ⊂ Zk(U).

Moreover, for any β ∈ Zk(U) we have (again by part (a)), that (T−1)∗(β) ∈ Zk(V ) and hence

T ∗((T−1)∗(β)) = (T ◦ T−1)∗(β) = id∗β = β.
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Thus T ∗(Zk(V )) = Zk(U). Similarly T ∗(Bk(V )) = Bk(U) and (T−1)∗(Bk(U)) = Bk(V ).

Now, consider the (potentially ill-defined) map

Ψ : Hk(V ) 3 ω +Bk(V ) 7→ T ∗(ω) +Bk(U) ∈ Hk(U),

which we note is linear since T ∗ is linear. We will show that Ψ is a vector space isomorphism by
checking it is (i) well-defined, (ii) injective, and (iii) surjective.

(i) Suppose α, β ∈ Zk(V ) satisfy α+Bk(V ) = β+Bk(V ). We need to show they have the same
image under Ψ. The equality of these cosets implies α−β ∈ Bk(V ), and so T ∗(α)−T ∗(β) =
T ∗(α− β) ∈ Bk(U) by the first part of our proof. But then

Ψ(α+Bk(V )) = T ∗(α) +Bk(U) = T ∗(β) +Bk(U) = Ψ(β +Bk(V ))

Thus Ψ is well-defined.

(ii) If Ψ(α + Bk(V )) = Ψ(β + Bk(V )) for α, β ∈ Zk(V ), then T ∗(α) + Bk(U) = T ∗(β) + Bk(U)
so that T ∗(α − β) = T ∗(α) − T ∗(β) ∈ Bk(U). But then the first part of our proof implies
α− β ∈ Bk(V ). Thus α+Bk(V ) = β +Bk(V ), and so Ψ is injective.

(iii) This follows immediately from T ∗(Zk(V )) = Zk(U).

Thus Hk(V ) ∼= Hk(U) via the vector space isomorphism Ψ. �

2. First observe that for any open box B = (a1, b1)× · · · × (an, bn) ⊂ Rn, we have

δB = (δ1a1, δ1b1)× · · · × (δnan, δnbn).

Thus |δB| = δ1 · · · δn|B|. Now, if {Bk}k∈N is a countable collection of open boxes that covers A,
then {δBk}k∈N is a countable collection of open boxes. Furthermore, it covers δA. Indeed, every
element of δA is of the form (δ1x1, . . . , δnxn) for some (x1, . . . , xn) ∈ A. There exists some k such that
(x1, . . . , xn) ∈ Bk and hence (δ1x1, . . . , δnxn) ∈ δBk. This implies

m∗(δA) ≤
∞∑
k=1

|δBk| = δ1 · · · δn
∞∑
k=1

|Bk|.

Since this holds for all countable coverings of A by open boxes, we obtain m∗(δA) ≤ m∗(A). The
reverse inequality holds by considering A′ := δA, δ′ = (δ−11 , . . . , δ−1n ), and δ′A′. �

3. (a) Since every finite covering of A by open boxes is in particular a countable covering, we immediately
have m∗(A) ≤ J∗(A). �

(b) Since A ⊂ A, any covering of A by finitely many open boxes is a covering for A. Hence J∗(A) ≤
J∗(A). To see the reverse inequality let ε > 0. Let {B1, . . . , BN} be a finite collection of open
boxes covering A. Observe that

N⋃
k=1

Bk

is a closed set (as a finite union of closed sets) containing A. Hence A is contained in the above
union. For each k = 1, . . . , N , if

Bk = (a1, b1)× · · · ⊗ (an, bn),

define B′k to be the dilation of Bk about its center point
(
a1+b1

2 , . . . , an+bn
2

)
by a factor of (1 + ε).

That is,

B′k :=

(
a1 + b1

2
− (1 + ε)

b1 − a1
2

,
a1 + b1

2
+ (1 + ε)

b1 − a1
2

)
× · · ·

· · · ×
(
an + bn

2
− (1 + ε)

bn − an
2

,
an + bn

2
+ (1 + ε)

bn − an
2

)
.
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Then |B′k| = (1 + ε)n|Bk|. Also, Bk ⊂ B′k so that

N⋃
k=1

B′k ⊃
N⋃

k=1

Bk ⊃ A.

Hence

J∗(A) ≤
N∑

k=1

|B′k| = (1 + ε)

N∑
k=1

|Bk|.

Since {B1, . . . , BN} was an arbitrary finite covering of A by open boxes, we obtain J∗(A) ≤
(1 + ε)J∗(A). Since ε > 0 was arbitrary, we have J∗(A) ≤ J∗(A), which establishes the claimed
equality. �

(c) Let A = Q ∩ [0, 1]. Then A is a countable set, hence a zero set: m∗(A) = 0. On the other hand,
by part (b) we have

J∗(A) = J∗(A) = J∗([0, 1]).

One can argue directly from the definition of the Jordan content that J∗([0, 1]) = 1, but here
simply appeal to Exercise 4 and note J∗([0, 1]) = |[0, 1]| = 1. Thus J∗(A) = 1 > 0 = m∗(A). �

4. We first note that we may assume S is closed by replacing S by S is necessary. Indeed, by part (b) of
the previous exercise we have J∗(S) = J∗(S). Also, since S is Riemann measurable, ∂S is a zero set.
Hence by subadditivity and monotonicity of the outer measure we have

m∗(S) = m∗(S ∪ ∂S) ≤ m∗(S) +m∗(∂S) = m∗(S) ≤ m∗(S),

so that m∗(S) = m∗(S). Finally, we have

∂S = S \ (S)◦ ⊂ S \ S◦ = ∂S,

so that m∗(∂S) = 0, which means S is Riemann measurable. Since χS and χS agree everywhere except
possibly on ∂S, a zero set, we have

|S| =
∫
χS =

∫
χS = |S|,

by Exercise 3 on Homework 6. Hence all concerned quantities are unchanged when we replace S by S
and so we may assume S is closed.

We will prove the following series of inequalities:

|S| ≤ m∗(S) ≤ J∗(S) ≤ |S|.

Let {Bk}k∈N be an countable covering of S by open boxes. Since S is bounded (it is Riemann measur-
able) and closed, it is compact by the Heine–Borel theorem. Hence we can reduce this open covering
to a finite one: {Bk1

, . . . , BkN
}. We then have by monotonicity of the Riemann integral that

|S| =
∫
χS ≤

∫ N∑
i=1

χBki
=

N∑
i=1

|Bki
| ≤

∞∑
k=1

|Bk|.

Since this holds for any countable covering {Bk}k∈N, we have |S| ≤ m∗(S). Next, the inequality
m∗(S) ≤ J ∗ (S) follows from part (a) of the previous exercise. Finally, ε > 0, let R ⊂ R2 be a
rectangle containing S, and let G be a grid with mesh(G) small enough so that

U(χS , G) ≤
∫
χS + ε = |S|+ ε.
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Let R1, . . . , RN be the subrectangles of R from the grid G which intersect S. Then S ⊂
⋃N

k=1Rk and

U(χS , G) =

N∑
k=1

1 · |Rk|.

To relate this to J∗(S), we must replace these closed subrectangles by open rectangles. For each
k = 1, . . . , N , define Bk to be the interior of the dilation of Rk about its center point by a factor of
(1 + ε). Then each Bk is an open rectangle containing Rk with |Bk| = (1 + ε)|Rk|. Hence {B1, . . . , Bk}
is a finite covering of S by open rectangles and so

J∗(S) ≤
N∑

k=1

|Bk| = (1 + ε)

N∑
k=1

|Rk| ≤ (1 + ε)(|S|+ ε).

Letting ε→ 0 yields the final inequality and hence the desired equalities. �
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