Exercises:

1. Find your book from Math 110.
2. Compute (without proof) the following matrices:
(a) $\left[\begin{array}{cc}2 & -1 \\ -3 & 0\end{array}\right]+\left[\begin{array}{cc}5 & 2 \\ 4 & -6\end{array}\right]$.
(b) $\left[\begin{array}{ccc}1 & 0 & 1 \\ -2 & 3 & 4\end{array}\right] \cdot\left[\begin{array}{cc}2 & 1 \\ 0 & 3 \\ -6 & 7\end{array}\right]$.
(c) $\left[\begin{array}{ccc}1 & 0 & 1 \\ -2 & 3 & 4\end{array}\right]^{\mathrm{T}}$ (here ' T ' denotes the transpose of the matrix).
(d) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 0 & 1 \\ -2 & 2 & 1\end{array}\right]^{-1}$.
3. Let V be the vector space of degree three polynomials with real coefficients. Let W be the vector space of degree two polynomials with real coefficients. Consider the linear operator $T: V \rightarrow W$ which sends a polynomial to its derivative. Determine (without proof) the matrix representation of T with respect to the (ordered) bases $\left\{1, x, x^{2}, x^{3}\right\}$ for V and $\left\{1, x, x^{2}\right\}$ for W.
4. Denote $O=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$.
(a) Prove that $\langle O x, O y\rangle=\langle x, y\rangle$ for any vectors $x, y \in \mathbb{R}^{2}$. [Note: such a matrix is called an orthogonal matrix, and its column vectors yield an orthonormal basis for \mathbb{R}^{2}.]
(b) Remind yourself what "orthonormal basis" means.
(c) Prove that $\|O\|=1$. [Hint: use part (a).]
5. Let $n \in \mathbb{N}$ and let $D \in M_{n \times n}\left(\mathbb{R}^{n}\right)$ be a diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}$. Prove that $\|D\|=\max _{1 \leq i \leq n}\left|d_{i}\right|$.

Solutions:

1. It's at my parent's house.
2. (a) $\left[\begin{array}{cc}7 & 1 \\ 1 & -6\end{array}\right]$.
(b) $\left[\begin{array}{cc}-4 & 8 \\ -28 & 35\end{array}\right]$.
(c) $\left[\begin{array}{cc}1 & -2 \\ 0 & 3 \\ 1 & 4\end{array}\right]$.
(d) $\left[\begin{array}{ccc}1 & -2 & -1 \\ 3 / 2 & -7 / 2 & -1 \\ -1 & 3 & 1\end{array}\right]$.
3. $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$.
4. (a) Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. Then we compute:

$$
\begin{aligned}
\langle O x, O y\rangle & =\left\langle\left(\frac{x_{1}}{\sqrt{2}}+\frac{x_{2}}{\sqrt{2}},-\frac{x_{1}}{\sqrt{2}}+\frac{x_{2}}{\sqrt{2}}\right),\left(\frac{y_{1}}{\sqrt{2}}+\frac{y_{2}}{\sqrt{2}},-\frac{y_{1}}{\sqrt{2}}+\frac{y_{2}}{\sqrt{2}}\right)\right\rangle \\
& =\left(\frac{x_{1}}{\sqrt{2}}+\frac{x_{2}}{\sqrt{2}}\right)\left(\frac{y_{1}}{\sqrt{2}}+\frac{y_{2}}{\sqrt{2}}\right)+\left(-\frac{x_{1}}{\sqrt{2}}+\frac{x_{2}}{\sqrt{2}}\right)\left(-\frac{y_{1}}{\sqrt{2}}+\frac{y_{2}}{\sqrt{2}}\right) \\
& =\frac{x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}}{2}+\frac{x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{2}}{2} \\
& =x_{1} y_{1}+x_{2} y_{2}=\langle x, y\rangle .
\end{aligned}
$$

Alternatively, we use $\langle O x, O y\rangle=\left\langle O^{\mathrm{T}} O x, y\right\rangle$ and note that

$$
O^{\mathrm{T}} O=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(b) A basis is a set of vectors that is both linearly independent and spanning. A basis is orthonormal if each of the vectors has norm one and the vectors are pairwise orthogonal.
(c) Let $x \in \mathbb{R}^{2}$ and recall that $|x|=\langle x, x\rangle^{\frac{1}{2}}$. Thus by part (a), for all $x \neq 0$ we have

$$
\frac{|O x|}{|x|}=\frac{\langle O x, O x\rangle^{\frac{1}{2}}}{|x|}=\frac{\langle x, x\rangle^{\frac{1}{2}}}{|x|}=\frac{|x|}{|x|}=1 .
$$

Thus

$$
\|O\|=\sup \left\{\frac{|O x|}{|x|}: x \neq 0\right\}=1
$$

5. Fix $x \in \mathbb{R}^{n}, x \neq 0$, and write $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then $D x=\left(d_{1} x_{1}, d_{2} x_{2}, \ldots, d_{n} x_{n}\right)$. Denote $d:=\max _{1 \leq i \leq n}\left|d_{i}\right|$. Observe that

$$
|D x|^{2}=\left(d_{1} x_{1}\right)^{2}+\cdots+\left(d_{n} x_{n}\right)^{2} \leq d^{2}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)=d^{2}|x|^{2}
$$

Thus $\|D\| \leq d$. On the other hand, if $i \in\{1, \ldots, n\}$ is such that $\left|d_{i}\right|=d$, then letting e_{i} be the vector whose entries are all zero except for a 1 in the $i t h$ component, then

$$
\frac{\left|D e_{i}\right|}{\left|e_{i}\right|}=\frac{\sqrt{0^{2}+\cdots+\left(d_{i}\right)^{2}+\cdots+0^{2}}}{\sqrt{0^{2}+\cdots+1^{2}+\cdots+0^{2}}}=\frac{\left|d_{i}\right|}{1}=d .
$$

Thus $\|D\| \geq d$, which yields $\|D\|=d$ when combined with the previous inequality.

