
Math 105 Extra Credit Solutions 4/27/2018

Exercises:

1. Higher Order Chain Rule: Let U ⊂ Rn and V ⊂ Rm be open sets, and let f : U → Rm and
g : V → R` be r-times differentiable functions with f(U) ⊂ V . Prove that h := g ◦ f : U → R` is
r-times differentiable and that for p ∈ U

(Drh)p =

r∑
k=1

∑
µ

(Dkg)f(p) ◦ (Dµf)p,

where the second sum is over partitions µ of {1, . . . , r} into k disjoint, non-empty subsets. If µ =
{µ1, µ2, . . . , µk} then (Dµf)p is defined by

(Dµf)p(v1, . . . , vr) =
(

(D|µ1|f)p(vµ1), . . . , (D|µk|f)p(vµk
)
)
, v1, . . . , vr ∈ Rn,

where if µj = {i1 < i2 < · · · < id} then |µj | = d and vµj = (vi1 , . . . , vid).

2. Higher Order Product Rule: Let U ⊂ Rn be an open set, and let f, g : U → Rm be r-times
differentiable functions. For v, w ∈ Rm let 〈v, w〉 denote their scalar product:

〈v, w〉 := v1w1 + · · ·+ vmwm.

Prove that h := 〈f, g〉 : U → R is r-times differentiable and that for p ∈ U and v1, . . . , vr ∈ Rn

(Drh)p(v1, . . . , vn) =

r∑
k=0

∑
|µ|=k

〈
(Dkf)p(vµ), (Dr−kg)p(vµc)

〉
,

where the second sum is over subsets µ ⊂ {1, 2, . . . , r} of size k and vµ, vµc are as in the previous
exercise.

3. Continuous versus Smooth Paths:

(a) Construct a continuous map f : [0, 1] → R2 whose image is not a zero set using the following
steps:

i. Show that the subset S ⊂ [0, 1] consisting of all numbers having decimal expansions of the
form

0.a1b10a2b20a3b30 . . . , ai, bi ∈ {0, 1, 2, . . . , 9}
is closed.

ii. Show that the functions α, β : S → [0, 1] defined by

α : 0.a1b10a2b20a3b30 . . . 7→ 0.a1a2a3 . . .

β : 0.a1b10a2b20a3b30 . . . 7→ 0.b1b2b3 . . . ,

are continuous.

iii. Show that there exist continuous extensions of α and β to [0, 1], denoted A and B respectively,
which equal 0 at 1 and are linear on [0, 1] \ S.
[Note: you may use, without proof, that every open subsets of R is a disjoint union of open
intervals.]

iv. Show that f : [0, 1]→ [0, 1]2 defined by f(x) = (A(x), B(x)) is continuous and surjective.

[Note: this part of the exercise was adapted from Exercise IV.31 of Rosenlicht’s Introduction to
Analysis.]

(b) Suppose f : [0, 1]→ R2 is Lipschitz:

sup

{
|f(x)− f(y)|
|x− y|

: x, y ∈ [0, 1], x 6= y

}
<∞.

Show that f([0, 1]) is a zero set.
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(c) Show that for any smooth map f : [0, 1]→ R2, f([0, 1]) is a zero set.

4. Unit Disc as a 2-Cell:

(a) Show that the function g : R→ R defined by

g(t) =

{
0 if t ≤ 0

exp(−1/t) otherwise

is smooth.

(b) Let h(t) := g(1− t). Show that

f(t) :=
g(t)

g(t) + h(t)

is a smooth function satisfying  f(t) = 0 if t ≤ 0
0 < f(t) < 1 if 0 < t < 1
f(t) = 1 if 1 ≤ t

.

(c) Let ϕ : [0, 1]2 → R2 be defined by

ϕ(u) =
f(|ψ(u)|)
|ψ(u)|

ψ(u),

where ψ(x, y) = (2x− 1, 2y − 1). Prove that ϕ is a 2-cell in R2 whose image is {v ∈ R2 : |v| ≤ 1}.
(d) Compute ∂ϕ and the image of this 1-chain.

———————————————————————————————————————————–

Solutions:

1. We proceed by induction. The base case follows from the version of the chain rule that we proved in
class. Assume the claimed formula holds for r − 1. Then we compute for vr ∈ Rn:

(Dr−1h)p+vr − (Dr−1h)p =

r−1∑
k=1

∑
µ

(Dkg)f(p+vr) ◦ (Dµf)p+vr − (Dkg)f(p) ◦ (Dµf)p

=

r−1∑
k=1

∑
µ

(Dkg)f(p) ◦ [(Dµf)p+vr − (Dµf)p]

+

r−1∑
k=1

∑
µ

[(Dkg)f(p+vr) − (Dkg)f(p)] ◦ (Dµf)p

+

r−1∑
k=1

∑
µ

[(Dkg)f(p+vr) − (Dkg)f(p)] ◦ [(Dµf)p+vr − (Dµf)p] .

Let us denote these three sums by S1, S2, and S3, respectively.
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We first analyze S1. Let µ = {µ1, . . . , µk}, then by telescoping and the differentiability of f we have

(Dµf)p+vr − (Dµf)p

=

k∑
j=1

(
(D|µ1|f)p+vr , . . . , (D

|µj−1|f)p+vr ,
[
(D|µj |f)p+vr − (D|µj |f)p

]
, (D|µj+1|f)p, . . . , (D

|µk|f)p

)

=

k∑
j=1

(
(D|µ1|f)p+vr , . . . , (D

|µj−1|f)p+vr , Rj(vr) + (D|µj |+1f)p(vr), (D
|µj+1|f)p, . . . , (D

|µk|f)p

)

=

k∑
j=1

(
(D|µ1|f)p+vr , . . . , (D

|µj−1|f)p+vr , (D
|µj |+1f)p(vr), (D

|µj+1|f)p, . . . , (D
|µk|f)p

)

+

k∑
j=1

(
(D|µ1|f)p+vr , . . . , (D

|µj−1|f)p+vr , Rj(vr), (D
|µj+1|f)p, . . . , (D

|µk|f)p

)
where R1, . . . , Rk are sublinear with respect to vr. Let νj := {µ1, . . . , µj ∪{vr}, . . . , µk}, then the term
in S1 corresponding to k and µ equals

k∑
j=1

(Dkg)f(p) ◦ (Dνjf)p(vr) + R̃1(vr),

where R̃1 is also sublinear with respect to vr.

Next we analyze S2. From the base case it follows

(Dkg)f(p+vr) − (Dkg)f(p) = R̃2(vr) +D((Dkg) ◦ f)p(vr) = R̃2(vr) + [(Dk+1g)f(p) ◦ (Df)](vr)

where R̃2 is sublinear with respect to vr. Now, if µ = {µ1, . . . , µk} is a partition of {1, . . . , r− 1}, then
ν := {µ1, . . . , µk, {r}} is a partition of {1, . . . , r} into k+1 subsets. Thus the terms in S2 corresponding
to k and µ equals

R̃2(vr, (D
µf)p) + (Dk+1g)f(p) ◦ (Dνf)p.

Every partition of {1, . . . , r} arises from a partition µ = {µ1, . . . , µk} of {1, . . . , r− 1} by either adding
{r} to some µj or by letting {r} be the k + 1st subset. Thus S1 + S2 yields the claimed formula for
Drh plus terms that are sublinear with respect to vr. Consequently, it remains to show that S3 is
sublinear with respect to vr. Indeed, by our previous analyses we have:

[(Dkg)f(p+vr) − (Dkg)f(p)] ◦ [(Dµf)p+vr − (Dµf)p]

=R̃2(vr, (D
µf)p+vr − (Dµf)p) + (Dk+1g)f(p)((Df)p(vr), (D

µf)p+vr − (Dµf)p)

=[R̃2(vr, (D
µf)p+vr − (Dµf)p)

+

k∑
j=1

(Dk+1g)f(p)

(
(Df)p(vr), (D

|µ1|f)p+vr , . . . , Rj(vr), . . . , (D
|µk|f)p

)

+

k∑
j=1

(Dk+1g)f(p)

(
(Df)p(vr), (D

|µ1|f)p+vr , . . . , (D
|µj |+1f)p(vr), . . . , (D

|µk|f)p

)
The first term and the first sum are clearly sublinear. The second sum is sublinear with respect to vr
since two entries contain vr. Thus S3 is sublinear with respect to vr and the claimed formula for Drh
holds. �

2. We proceed by induction. The base case follows from the version of the product rule we proved in
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class. Assume the claimed formula holds for r − 1. Then we compute for v1, . . . , vr ∈ Rn

[(Dr−1h)p+vr − (Dr−1h)p](v1, . . . , vr−1)

=

r−1∑
k=0

∑
|µ|=k

〈
(Dkf)p+vr (vµ), (Dr−1−kg)p+vr (vµc)

〉
−
〈
(Dkf)p(vµ), (Dr−1−kg)p(vµc)

〉
=

r−1∑
k=0

∑
|µ|=k

〈
(Dkf)p+vr (vµ), [(Dr−1−kg)p+vr − (Dr−1−kg)p](vµc)

〉
+

r−1∑
k=0

∑
|µ|=k

〈
[(Dkf)p+vr − (Dkf)p](vµ), (Dr−1−kg)p(vµc)

〉
Now, since f and g are r-times differentiable, we can write

[(Dr−1−kg)p+vr − (Dr−1−kg)p](vµc) = Rg(vµc , vr) + (Dr−kg)p(vµc , vr)

[(Dkf)p+vr − (Dkf)p](vµ) = Rf (vµ, vr) + (Dk+1f)p(vµ, vr),

where Rg and Rf are sublinear with respect to vr. Continuing our previous computation we have

[(Dr−1h)p+vr − (Dr−1h)p](v1, . . . , vr−1)

=

r−1∑
k=0

∑
|µ|=k

〈
(Dkf)p+vr (vµ), (Dr−kg)p(vµc , vr)

〉
+

r−1∑
k=0

∑
|µ|=k

〈
(Dk+1f)p(vµ, vr), (D

r−k−1g)p(vµc)
〉

+R(vr),

where R(vr) is sublinear with respect to vr. For 0 ≤ k ≤ r − 1, rewrite〈
(Dkf)p+vr (vµ), (Dr−kg)p(vµc , vr)

〉
=
〈
(Dkf)p(vµ), (Dr−kg)p(vµc , vr)

〉
+
〈
[(Dkf)p+vr − (Dkf)p](vµ), (Dr−kg)p(vµc , vr)

〉
.

Since k < r, Dkf is continuous since it is differentiable. Hence the second term above is sublinear with
respect to vr. So we may push our previous computation even further to write

[(Dr−1h)p+vr − (Dr−1h)p](v1, . . . , vr−1)

=

r−1∑
k=0

∑
|µ|=k

〈
(Dkf)p(vµ), (Dr−kg)p(vµc , vr)

〉
+

r−1∑
k=0

∑
|µ|=k

〈
(Dk+1f)p(vµ, vr), (D

r−k−1g)p(vµc)
〉

+ R̃(vr),

where R̃(vr) is some new quantity which is sublinear with respect to vr. However, the rest of the last
expression is precisely the formula for r:

r∑
k=0

∑
|ν|=k

〈
(Dkf)p(vν), (Dr−kg)p(vνc)

〉
.

Indeed fix ν ⊂ {1, . . . , r}. If r 6∈ ν, then for µ := ν ⊂ {1, . . . , r − 1}〈
(Dkf)p(vν), (Dr−kg)p(vνc)

〉
=
〈
(Dkf)p(vµ), (Dr−kg)p(vµc , vr)

〉
.

Otherwise r ∈ ν, so then for µ := ν \ {r} ⊂ {1, . . . , r − 1}〈
(Dkf)p(vν), (Dr−kg)p(vνc)

〉
=
〈
(Dkf)p(vµ, vr), (D

r−kg)p(vµc)
〉
.

Thus we have shown that (Dr−1h)p+vr − (Dr−1h)p minus the claimed the formula for (Drh)p(vr) is
sublinear with respect to vr. This precisely means the claimed formula gives (Drh)p. �
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3. (a) i. For each n ∈ N, set

Sn :=

9⋃
a1,b1,...,an,bn=0

[0.a1b10a2b20 . . . 0anbn, 0.a1b10a2b20 . . . 0anbn1]

Then Sn is closed as the finite union of closed intervals. Then

S =

∞⋂
n=1

Sn,

so that S is closed as an intersection of closed sets. �
ii. Let (xn)n∈N ⊂ S be a sequence converging to x (which is necessarily in S since S is closed).

To see that α and β are continuous, it suffices show show α(xn) → α(x) and β(xn) → β(x).
Suppose

x = 0.a1, b10a2b20 . . .

xn = 0.a
(n)
1 b

(n)
1 0a

(n)
2 b

(n)
2 0 . . . n ∈ N

We claim that for each k ∈ N, the sequences (a
(n)
k )n∈N and (b

(n)
k ) converge to ak and bk,

respectively. Suppose, towards a contradiction, that this is not the case. Let k ∈ N be

the smallest number for which either (a
(n)
k )n∈N or (b

(n)
k )n∈N does not converge to ak or bk,

respectively. We will assume the former, the proof for the latter being similar. Then (a
(n)
` )n∈N

and (b
(n)
` )n∈N converge to a` and b`, respectively, for each ` = 1, . . . , k−1. But since these are

discrete sequences that means there exists N` ∈ N such that for all n ≥ N` we have a
(n)
` = a`

and b
(n)
` = b`. Set N = max{N1, . . . , Nk−1}. Now, (a

(n)
k )n∈N not converging to ak means

there is some a ∈ {0, 1, 2, . . . , 9} \ ak such that a
(n)
k = a for infinitely many n ∈ N. Thus we

can find a subsequence (a
(nj)
k )j∈N that is constantly equal to a 6= ak. But then for j ∈ N large

enough so that nj ≥ N , we have

|xnj − x| ≥
1

103k−2
|a− ak| − 0. 0 · · · 0︸ ︷︷ ︸

3k−2 digits

991 ≥ 0. 0 · · · 0︸ ︷︷ ︸
3k−2 digits

009.

Since this holds for all sufficiently large j, this contradicts xn converging x. Thus we must

have a
(n)
k → ak and b

(n)
k → bk for all k ∈ N.

Now, let ε > 0. Let k ∈ N be such that 1
10k

< ε. For each ` = 1, . . . , k, there exists N` such

that for n ≥ N` we have a
(n)
` = a`. Let N = max{N1, . . . , Nk}. Then for n ≥ N we have

|α(xn)− α(x)| =

∣∣∣∣∣
∞∑

`=k+1

a
(n)
` − a`

10`

∣∣∣∣∣ ≤
∞∑

`=k+1

9

10`
=

1

10k
< ε.

Hence α(xn)→ α(x). Similarly β(xn)→ β(x). �
iii. Since S is closed, Sc is open and therefore a countable union of disjoint open intervals. Since

0 ∈ S, we have, in particular, that

[0, 1] \ S = (c0, 1] t
∞⊔
n=1

(cn, dn),

where c0, c1, d1, c2, d2, . . . ∈ S. Thus we define A on [0, 1] \ S by

A(x) :=

{
α(cn) dn−xdn−cn + α(dn) x−cn

dn−cn if x ∈ (cn, dn) for some n ∈ N
α(c0) 1−x

1−c0 if x ∈ (c0, 1]
.

Similarly for B. Then A and B are continuous on [0, 1] since they are continuous on S (by
virtue of α and β being continuous), continuous on S \ [0, 1] (since they are linear), and agree
on the common boundary points c0, c1, d1, . . . by definition. �
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iv. f is continuous since each of its coordinate functions are continuous. Let (x, y) ∈ [0, 1]2.
Then there decimal expansions for x and y of the form x = 0.a1a2 . . . and y = 0.b1b2 . . . (we
use 1 = 0.99 . . . if necessary). Thus

(x, y) = f(0.a1b10a2b20 . . .),

and so f is surjective. �

(b) Denote

L := sup

{
|f(x)− f(y)|
|x− y|

: x, y ∈ [0, 1], x 6= y

}
.

Observe that for any x, y ∈ [0, 1], we have |f(x) − f(y)| ≤ L|x − y|. In particular, for δ > 0 if
B ⊂ R2 is an open square with center x and sidelength 2Lδ, then f(y) ∈ B for all y ∈ [0, 1]
satisfying |x− y| < δ.

Now, let ε > 0. Let 0 < δ < min{ ε
12L2 , 1} and let N ∈ N be such that 1 ≤ δN and δ(N + 1) ≤ 3.

Set x0 = 0 and xn = max{x0 + δn, 1} for n = 1, . . . , N . Then

[0, 1] ⊂
N⋃
n=0

(xn − δ, xn + δ).

Consequently, if we let Bn be the open square with center f(xn) and sidelength 2Lδ, then

f([0, 1]) ⊂
N⋃
n=0

Bn.

We have
N∑
n=0

|Bn| =
N∑
n=0

4L2δ2 = 4(N + 1)L2δ2 ≤ 12L2δ < ε.

Since ε > 0 was arbitrary, we have that f([0, 1]) is a zero set. �

(c) By part (c), it suffices to show that f is Lipschitz. Since f is smooth, Df is continuous. Then
Df is bounded on [0, 1] since it is a compact set. Thus by the Mean Value Theorem we see that
f is Lipschitz. �

4. (a) g is clearly smooth on R \ {0}, so it suffices to check smoothness at 0. Note that by the chain rule
and product rule, for any n ∈ N and t > 0 g(n)(t) = p( 1

t )e
−1/t where p is some polynomial. Since

e−1/t tends to zero as t→ 0 faster than any polynomial, we have that

lim
x→0+

g(n)(t)− g(n)(0)

t− 0
= lim
x→0+

p( 1
t )e
−1/t

t
= lim
x→0+

1

t
p(

1

t
)e−1/t = 0,

which clearly agrees with the left-hand limit. Thus for each n ∈ N, g(n)(0) = 0. In particular, g
is smooth. �

(b) Since g(t) = 0 for t ≤ 0, we have that f(t) = 0. For 0 < t < 1 we have g(t), h(t) > 0 and so

0 <
g(t)

g(t) + h(t)
<
g(t)

g(t)
= 1.

For t ≥ 1 we have h(t) = g(1− t) = 0 so that

f(t) =
g(t)

g(t)
= 1.

Finally, f is smooth since g and g + h are smooth and g + h > 0. �

6 c©Brent Nelson 2018



Math 105 Extra Credit Solutions 4/27/2018

(c) We first note that

R 3 t 7→
f(
√
|t|)√
|t|

is smooth. Indeed, for t 6= 0 this is clear, and for t = 0 it follows from the fact that g and hence
f decays exponentially. By the product rule, |ψ(u)|2 = 〈ψ(u), ψ(u)〉 is smooth and thus

f(|ψ(u)|
|ψ(u)|

=

√
|ψ(u)|2√
|ψ(u)|2

,

is smooth by the chain rule. Another application of the product rule yields that ϕ is smooth and
hence a 2-cell in R2.

To see that ϕ has the claimed image, first note that f |[0,1] is onto [0, 1] by the intermediate value
theorem. Let v ∈ R2 satisfy |v| ≤ 1, and let s ∈ [0, 1] be such that f(s) = |v|. Then for w = sv

|v| ,

|w| = s and so
f(|w|)
|w|

w =
f(s)

s

sv

|v|
= |v| v

|v|
= v.

Since ψ is onto [−1, 1]2, there exists u ∈ [0, 1]2 such that ψ(u) = w and so ϕ has the claimed
image. �

(d) We first compute the dipoles

δ1ϕ(t) = ϕ(1, t)− ϕ(0, t) =
f(|(1, 2t− 1)|)
|(1, 2t− 1)|

(1, 2t− 1)− f(|(−1, 2t− 1)|)
| − 1, 2t− 1|

(−1, 2t− 1)

=
f(
√

1 + (2t− 1)2)

|(1, 2t− 1)|
(1, 2t− 1)−

f(
√

1 + (2t− 1)2)

|(−1, 2t− 1)|
(−1, 2t− 1)

=
(1, 2t− 1)

|(1, 2t− 1)|
− (−1, 2t− 1)

|(−1, 2t− 1)|

Similarly

δ2ϕ(t) =
(2t− 1, 1)

|(2t− 1, 1)|
− (2t− 1,−1)

|(2t− 1,−1)|
Thus

∂ϕ(t) =
(1, 2t− 1)

|(1, 2t− 1)|
− (−1, 2t− 1)

|(−1, 2t− 1)|
− (2t− 1, 1)

|(2t− 1, 1)|
+

(2t− 1,−1)

|(2t− 1,−1)|
Observe that each 1-cell in this 1-chain consists of units vectors. Hence the image ∂ϕ is the
set {v ∈ R2 : |v| = 1}. To be more precise, the first term travels from (1,−1) to (1, 1) counter-
clockwise around the unit circle, the second term travels from (−1, 1) to (−1,−1), the third term
from (1, 1) to (−1, 1), and the fourth term from (−1,−1) to (1,−1). �
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