Exercises:

1. Higher Order Chain Rule: Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open sets, and let $f: U \to \mathbb{R}^m$ and $g: V \to \mathbb{R}^\ell$ be *r*-times differentiable functions with $f(U) \subset V$. Prove that $h := g \circ f: U \to \mathbb{R}^\ell$ is *r*-times differentiable and that for $p \in U$

$$(D^r h)_p = \sum_{k=1}^r \sum_{\mu} (D^k g)_{f(p)} \circ (D^{\mu} f)_p,$$

where the second sum is over partitions μ of $\{1, \ldots, r\}$ into k disjoint, non-empty subsets. If $\mu = \{\mu_1, \mu_2, \ldots, \mu_k\}$ then $(D^{\mu}f)_p$ is defined by

$$(D^{\mu}f)_{p}(v_{1},\ldots,v_{r}) = \left((D^{|\mu_{1}|}f)_{p}(v_{\mu_{1}}),\ldots,(D^{|\mu_{k}|}f)_{p}(v_{\mu_{k}}) \right), \qquad v_{1},\ldots,v_{r} \in \mathbb{R}^{n},$$

where if $\mu_j = \{i_1 < i_2 < \dots < i_d\}$ then $|\mu_j| = d$ and $v_{\mu_j} = (v_{i_1}, \dots, v_{i_d})$.

2. Higher Order Product Rule: Let $U \subset \mathbb{R}^n$ be an open set, and let $f, g: U \to \mathbb{R}^m$ be r-times differentiable functions. For $v, w \in \mathbb{R}^m$ let $\langle v, w \rangle$ denote their scalar product:

$$\langle v, w \rangle := v_1 w_1 + \dots + v_m w_m.$$

Prove that $h := \langle f, g \rangle : U \to \mathbb{R}$ is r-times differentiable and that for $p \in U$ and $v_1, \ldots, v_r \in \mathbb{R}^n$

$$(D^{r}h)_{p}(v_{1},\ldots,v_{n}) = \sum_{k=0}^{r} \sum_{|\mu|=k} \left\langle (D^{k}f)_{p}(v_{\mu}), (D^{r-k}g)_{p}(v_{\mu^{c}}) \right\rangle$$

where the second sum is over subsets $\mu \subset \{1, 2, ..., r\}$ of size k and v_{μ}, v_{μ^c} are as in the previous exercise.

3. Continuous versus Smooth Paths:

- (a) Construct a continuous map $f: [0,1] \to \mathbb{R}^2$ whose image is **not** a zero set using the following steps:
 - i. Show that the subset $S \subset [0,1]$ consisting of all numbers having decimal expansions of the form

$$0.a_1b_10a_2b_20a_3b_30\ldots, \qquad a_i, b_i \in \{0, 1, 2, \ldots, 9\}$$

is closed.

ii. Show that the functions $\alpha, \beta \colon S \to [0, 1]$ defined by

$$\begin{array}{ll} \alpha \colon & 0.a_1b_10a_2b_20a_3b_30\ldots \mapsto 0.a_1a_2a_3\ldots \\ \beta \colon & 0.a_1b_10a_2b_20a_3b_30\ldots \mapsto 0.b_1b_2b_3\ldots, \end{array}$$

are continuous.

iii. Show that there exist continuous extensions of α and β to [0, 1], denoted A and B respectively, which equal 0 at 1 and are linear on $[0, 1] \setminus S$.

[Note: you may use, without proof, that every open subsets of \mathbb{R} is a disjoint union of open intervals.]

iv. Show that $f: [0,1] \to [0,1]^2$ defined by f(x) = (A(x), B(x)) is continuous and surjective.

[Note: this part of the exercise was adapted from Exercise IV.31 of Rosenlicht's Introduction to Analysis.]

(b) Suppose $f: [0,1] \to \mathbb{R}^2$ is Lipschitz:

$$\sup\left\{\frac{|f(x)-f(y)|}{|x-y|}\colon x,y\in[0,1],\ x\neq y\right\}<\infty.$$

Show that f([0,1]) is a zero set.

(c) Show that for any smooth map $f: [0,1] \to \mathbb{R}^2$, f([0,1]) is a zero set.

4. Unit Disc as a 2-Cell:

(a) Show that the function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(t) = \begin{cases} 0 & \text{if } t \le 0\\ \exp(-1/t) & \text{otherwise} \end{cases}$$

is smooth.

(b) Let h(t) := g(1-t). Show that

$$f(t) := \frac{g(t)}{g(t) + h(t)}$$

is a smooth function satisfying

$$\left\{ \begin{array}{rl} f(t) = 0 & \text{if } t \leq 0 \\ 0 < f(t) < 1 & \text{if } 0 < t < 1 \\ f(t) = 1 & \text{if } 1 \leq t \end{array} \right. .$$

(c) Let $\varphi \colon [0,1]^2 \to \mathbb{R}^2$ be defined by

$$\varphi(u) = \frac{f(|\psi(u)|)}{|\psi(u)|}\psi(u),$$

where $\psi(x, y) = (2x - 1, 2y - 1)$. Prove that φ is a 2-cell in \mathbb{R}^2 whose image is $\{v \in \mathbb{R}^2 : |v| \leq 1\}$. (d) Compute $\partial \varphi$ and the image of this 1-chain.

Solutions:

1. We proceed by induction. The base case follows from the version of the chain rule that we proved in class. Assume the claimed formula holds for r-1. Then we compute for $v_r \in \mathbb{R}^n$:

$$(D^{r-1}h)_{p+v_r} - (D^{r-1}h)_p = \sum_{k=1}^{r-1} \sum_{\mu} (D^k g)_{f(p+v_r)} \circ (D^{\mu}f)_{p+v_r} - (D^k g)_{f(p)} \circ (D^{\mu}f)_p$$

$$= \sum_{k=1}^{r-1} \sum_{\mu} (D^k g)_{f(p)} \circ [(D^{\mu}f)_{p+v_r} - (D^{\mu}f)_p]$$

$$+ \sum_{k=1}^{r-1} \sum_{\mu} [(D^k g)_{f(p+v_r)} - (D^k g)_{f(p)}] \circ (D^{\mu}f)_p$$

$$+ \sum_{k=1}^{r-1} \sum_{\mu} [(D^k g)_{f(p+v_r)} - (D^k g)_{f(p)}] \circ [(D^{\mu}f)_{p+v_r} - (D^{\mu}f)_p]$$

Let us denote these three sums by S_1 , S_2 , and S_3 , respectively.

We first analyze S_1 . Let $\mu = {\mu_1, \ldots, \mu_k}$, then by telescoping and the differentiability of f we have

$$\begin{split} (D^{\mu}f)_{p+v_{r}} &- (D^{\mu}f)_{p} \\ &= \sum_{j=1}^{k} \left((D^{|\mu_{1}|}f)_{p+v_{r}}, \dots, (D^{|\mu_{j-1}|}f)_{p+v_{r}}, \left[(D^{|\mu_{j}|}f)_{p+v_{r}} - (D^{|\mu_{j}|}f)_{p} \right], (D^{|\mu_{j+1}|}f)_{p}, \dots, (D^{|\mu_{k}|}f)_{p} \right) \\ &= \sum_{j=1}^{k} \left((D^{|\mu_{1}|}f)_{p+v_{r}}, \dots, (D^{|\mu_{j-1}|}f)_{p+v_{r}}, R_{j}(v_{r}) + (D^{|\mu_{j}|+1}f)_{p}(v_{r}), (D^{|\mu_{j+1}|}f)_{p}, \dots, (D^{|\mu_{k}|}f)_{p} \right) \\ &= \sum_{j=1}^{k} \left((D^{|\mu_{1}|}f)_{p+v_{r}}, \dots, (D^{|\mu_{j-1}|}f)_{p+v_{r}}, (D^{|\mu_{j}|+1}f)_{p}(v_{r}), (D^{|\mu_{j+1}|}f)_{p}, \dots, (D^{|\mu_{k}|}f)_{p} \right) \\ &+ \sum_{j=1}^{k} \left((D^{|\mu_{1}|}f)_{p+v_{r}}, \dots, (D^{|\mu_{j-1}|}f)_{p+v_{r}}, R_{j}(v_{r}), (D^{|\mu_{j+1}|}f)_{p}, \dots, (D^{|\mu_{k}|}f)_{p} \right) \end{split}$$

where R_1, \ldots, R_k are sublinear with respect to v_r . Let $\nu_j := \{\mu_1, \ldots, \mu_j \cup \{v_r\}, \ldots, \mu_k\}$, then the term in S_1 corresponding to k and μ equals

$$\sum_{j=1}^{k} (D^{k}g)_{f(p)} \circ (D^{\nu_{j}}f)_{p}(v_{r}) + \tilde{R}_{1}(v_{r}),$$

where \tilde{R}_1 is also sublinear with respect to v_r .

Next we analyze S_2 . From the base case it follows

$$(D^{k}g)_{f(p+v_{r})} - (D^{k}g)_{f(p)} = \tilde{R}_{2}(v_{r}) + D((D^{k}g) \circ f)_{p}(v_{r}) = \tilde{R}_{2}(v_{r}) + [(D^{k+1}g)_{f(p)} \circ (Df)](v_{r})$$

where \tilde{R}_2 is sublinear with respect to v_r . Now, if $\mu = \{\mu_1, \ldots, \mu_k\}$ is a partition of $\{1, \ldots, r-1\}$, then $\nu := \{\mu_1, \ldots, \mu_k, \{r\}\}$ is a partition of $\{1, \ldots, r\}$ into k+1 subsets. Thus the terms in S_2 corresponding to k and μ equals

$$\tilde{R}_2(v_r, (D^{\mu}f)_p) + (D^{k+1}g)_{f(p)} \circ (D^{\nu}f)_p.$$

Every partition of $\{1, \ldots, r\}$ arises from a partition $\mu = \{\mu_1, \ldots, \mu_k\}$ of $\{1, \ldots, r-1\}$ by either adding $\{r\}$ to some μ_j or by letting $\{r\}$ be the k + 1st subset. Thus $S_1 + S_2$ yields the claimed formula for $D^r h$ plus terms that are sublinear with respect to v_r . Consequently, it remains to show that S_3 is sublinear with respect to v_r . Indeed, by our previous analyses we have:

$$\begin{split} & [(D^{k}g)_{f(p+v_{r})} - (D^{k}g)_{f(p)}] \circ [(D^{\mu}f)_{p+v_{r}} - (D^{\mu}f)_{p}] \\ & = \tilde{R}_{2}(v_{r}, (D^{\mu}f)_{p+v_{r}} - (D^{\mu}f)_{p}) + (D^{k+1}g)_{f(p)}((Df)_{p}(v_{r}), (D^{\mu}f)_{p+v_{r}} - (D^{\mu}f)_{p}) \\ & = [\tilde{R}_{2}(v_{r}, (D^{\mu}f)_{p+v_{r}} - (D^{\mu}f)_{p}) \\ & + \sum_{j=1}^{k} (D^{k+1}g)_{f(p)} \left((Df)_{p}(v_{r}), (D^{|\mu_{1}|}f)_{p+v_{r}}, \dots, R_{j}(v_{r}), \dots, (D^{|\mu_{k}|}f)_{p} \right) \\ & + \sum_{j=1}^{k} (D^{k+1}g)_{f(p)} \left((Df)_{p}(v_{r}), (D^{|\mu_{1}|}f)_{p+v_{r}}, \dots, (D^{|\mu_{j}|+1}f)_{p}(v_{r}), \dots, (D^{|\mu_{k}|}f)_{p} \right) \end{split}$$

The first term and the first sum are clearly sublinear. The second sum is sublinear with respect to v_r since two entries contain v_r . Thus S_3 is sublinear with respect to v_r and the claimed formula for $D^r h$ holds.

2. We proceed by induction. The base case follows from the version of the product rule we proved in

class. Assume the claimed formula holds for r-1. Then we compute for $v_1, \ldots, v_r \in \mathbb{R}^n$

$$\begin{split} [(D^{r-1}h)_{p+v_r} - (D^{r-1}h)_p](v_1, \dots, v_{r-1}) \\ &= \sum_{k=0}^{r-1} \sum_{|\mu|=k} \left\langle (D^k f)_{p+v_r}(v_{\mu}), (D^{r-1-k}g)_{p+v_r}(v_{\mu^c}) \right\rangle - \left\langle (D^k f)_p(v_{\mu}), (D^{r-1-k}g)_p(v_{\mu^c}) \right\rangle \\ &= \sum_{k=0}^{r-1} \sum_{|\mu|=k} \left\langle (D^k f)_{p+v_r}(v_{\mu}), [(D^{r-1-k}g)_{p+v_r} - (D^{r-1-k}g)_p](v_{\mu^c}) \right\rangle \\ &+ \sum_{k=0}^{r-1} \sum_{|\mu|=k} \left\langle [(D^k f)_{p+v_r} - (D^k f)_p](v_{\mu}), (D^{r-1-k}g)_p(v_{\mu^c}) \right\rangle \end{split}$$

Now, since f and g are r-times differentiable, we can write

$$\begin{split} [(D^{r-1-k}g)_{p+v_r} - (D^{r-1-k}g)_p](v_{\mu^c}) &= R_g(v_{\mu^c}, v_r) + (D^{r-k}g)_p(v_{\mu^c}, v_r) \\ [(D^kf)_{p+v_r} - (D^kf)_p](v_{\mu}) &= R_f(v_{\mu}, v_r) + (D^{k+1}f)_p(v_{\mu}, v_r), \end{split}$$

where R_g and R_f are sublinear with respect to v_r . Continuing our previous computation we have

$$\begin{split} [(D^{r-1}h)_{p+v_r} - (D^{r-1}h)_p](v_1, \dots, v_{r-1}) \\ &= \sum_{k=0}^{r-1} \sum_{|\mu|=k} \left\langle (D^k f)_{p+v_r}(v_\mu), (D^{r-k}g)_p(v_{\mu^c}, v_r) \right\rangle \\ &+ \sum_{k=0}^{r-1} \sum_{|\mu|=k} \left\langle (D^{k+1}f)_p(v_\mu, v_r), (D^{r-k-1}g)_p(v_{\mu^c}) \right\rangle + R(v_r), \end{split}$$

where $R(v_r)$ is sublinear with respect to v_r . For $0 \le k \le r - 1$, rewrite

$$\left\langle (D^k f)_{p+v_r}(v_{\mu}), (D^{r-k}g)_p(v_{\mu^c}, v_r) \right\rangle = \left\langle (D^k f)_p(v_{\mu}), (D^{r-k}g)_p(v_{\mu^c}, v_r) \right\rangle \\ + \left\langle [(D^k f)_{p+v_r} - (D^k f)_p](v_{\mu}), (D^{r-k}g)_p(v_{\mu^c}, v_r) \right\rangle.$$

Since k < r, $D^k f$ is continuous since it is differentiable. Hence the second term above is sublinear with respect to v_r . So we may push our previous computation even further to write

$$\begin{split} [(D^{r-1}h)_{p+v_r} - (D^{r-1}h)_p](v_1, \dots, v_{r-1}) \\ &= \sum_{k=0}^{r-1} \sum_{|\mu|=k} \left\langle (D^k f)_p(v_\mu), (D^{r-k}g)_p(v_{\mu^c}, v_r) \right\rangle \\ &+ \sum_{k=0}^{r-1} \sum_{|\mu|=k} \left\langle (D^{k+1}f)_p(v_\mu, v_r), (D^{r-k-1}g)_p(v_{\mu^c}) \right\rangle + \tilde{R}(v_r), \end{split}$$

where $\tilde{R}(v_r)$ is some new quantity which is sublinear with respect to v_r . However, the rest of the last expression is precisely the formula for r:

$$\sum_{k=0}^{r} \sum_{|\nu|=k} \left\langle (D^k f)_p(v_{\nu}), (D^{r-k}g)_p(v_{\nu^c}) \right\rangle.$$

Indeed fix $\nu \subset \{1, \ldots, r\}$. If $r \notin \nu$, then for $\mu := \nu \subset \{1, \ldots, r-1\}$

$$\langle (D^k f)_p(v_{\nu}), (D^{r-k}g)_p(v_{\nu^c}) \rangle = \langle (D^k f)_p(v_{\mu}), (D^{r-k}g)_p(v_{\mu^c}, v_r) \rangle.$$

Otherwise $r \in \nu$, so then for $\mu := \nu \setminus \{r\} \subset \{1, \ldots, r-1\}$

$$\langle (D^k f)_p(v_{\nu}), (D^{r-k}g)_p(v_{\nu^c}) \rangle = \langle (D^k f)_p(v_{\mu}, v_r), (D^{r-k}g)_p(v_{\mu^c}) \rangle$$

Thus we have shown that $(D^{r-1}h)_{p+v_r} - (D^{r-1}h)_p$ minus the claimed the formula for $(D^rh)_p(v_r)$ is sublinear with respect to v_r . This precisely means the claimed formula gives $(D^rh)_p$.

i. For each $n \in \mathbb{N}$, set 3. (a)

$$S_n := \bigcup_{a_1, b_1, \dots, a_n, b_n = 0}^{9} [0.a_1b_10a_2b_20\dots 0a_nb_n, 0.a_1b_10a_2b_20\dots 0a_nb_n1]$$

Then S_n is closed as the finite union of closed intervals. Then

$$S = \bigcap_{n=1}^{\infty} S_n,$$

so that S is closed as an intersection of closed sets.

ii. Let $(x_n)_{n \in \mathbb{N}} \subset S$ be a sequence converging to x (which is necessarily in S since S is closed). To see that α and β are continuous, it suffices show show $\alpha(x_n) \to \alpha(x)$ and $\beta(x_n) \to \beta(x)$. Suppose

$$x = 0.a_1, b_1 0 a_2 b_2 0 \dots$$
$$x_n = 0.a_1^{(n)} b_1^{(n)} 0 a_2^{(n)} b_2^{(n)} 0 \dots \qquad n \in \mathbb{N}$$

We claim that for each $k \in \mathbb{N}$, the sequences $(a_k^{(n)})_{n \in \mathbb{N}}$ and $(b_k^{(n)})$ converge to a_k and b_k , respectively. Suppose, towards a contradiction, that this is not the case. Let $k \in \mathbb{N}$ be the smallest number for which either $(a_k^{(n)})_{n \in \mathbb{N}}$ or $(b_k^{(n)})_{n \in \mathbb{N}}$ does not converge to a_k or b_k , respectively. We will assume the former, the proof for the latter being similar. Then $(a_{\ell}^{(n)})_{n \in \mathbb{N}}$ and $(b_{\ell}^{(n)})_{n \in \mathbb{N}}$ converge to a_{ℓ} and b_{ℓ} , respectively, for each $\ell = 1, \ldots, k-1$. But since these are discrete sequences that means there exists $N_{\ell} \in \mathbb{N}$ such that for all $n \geq N_{\ell}$ we have $a_{\ell}^{(n)} = a_{\ell}$ and $b_{\ell}^{(n)} = b_{\ell}$. Set $N = \max\{N_1, \ldots, N_{k-1}\}$. Now, $(a_k^{(n)})_{n \in \mathbb{N}}$ not converging to a_k means there is some $a \in \{0, 1, 2, \ldots, 9\} \setminus a_k$ such that $a_k^{(n)} = a$ for infinitely many $n \in \mathbb{N}$. Thus we can find a subsequence $(a_k^{(n_j)})_{j\in\mathbb{N}}$ that is constantly equal to $a\neq a_k$. But then for $j\in\mathbb{N}$ large enough so that $n_i \geq N$, we have

$$|x_{n_j} - x| \ge \frac{1}{10^{3k-2}} |a - a_k| - 0. \underbrace{0 \cdots 0}_{3k-2 \text{ digits}} 991 \ge 0. \underbrace{0 \cdots 0}_{3k-2 \text{ digits}} 009$$

Since this holds for all sufficiently large j, this contradicts x_n converging x. Thus we must have $a_k^{(n)} \to a_k$ and $b_k^{(n)} \to b_k$ for all $k \in \mathbb{N}$. Now, let $\epsilon > 0$. Let $k \in \mathbb{N}$ be such that $\frac{1}{10^k} < \epsilon$. For each $\ell = 1, \ldots, k$, there exists N_ℓ such

that for $n \ge N_{\ell}$ we have $a_{\ell}^{(n)} = a_{\ell}$. Let $N = \max\{N_1, \ldots, N_k\}$. Then for $n \ge N$ we have

$$|\alpha(x_n) - \alpha(x)| = \left| \sum_{\ell=k+1}^{\infty} \frac{a_{\ell}^{(n)} - a_{\ell}}{10^{\ell}} \right| \le \sum_{\ell=k+1}^{\infty} \frac{9}{10^{\ell}} = \frac{1}{10^k} < \epsilon.$$

Hence $\alpha(x_n) \to \alpha(x)$. Similarly $\beta(x_n) \to \beta(x)$.

iii. Since S is closed, S^c is open and therefore a countable union of disjoint open intervals. Since $0 \in S$, we have, in particular, that

$$[0,1] \setminus S = (c_0,1] \sqcup \bigsqcup_{n=1}^{\infty} (c_n, d_n),$$

where $c_0, c_1, d_1, c_2, d_2, \ldots \in S$. Thus we define A on $[0, 1] \setminus S$ by

$$A(x) := \begin{cases} \alpha(c_n) \frac{d_n - x}{d_n - c_n} + \alpha(d_n) \frac{x - c_n}{d_n - c_n} & \text{if } x \in (c_n, d_n) \text{ for some } n \in \mathbb{N} \\ \alpha(c_0) \frac{1 - x}{1 - c_0} & \text{if } x \in (c_0, 1] \end{cases}.$$

Similarly for B. Then A and B are continuous on [0, 1] since they are continuous on S (by virtue of α and β being continuous), continuous on $S \setminus [0, 1]$ (since they are linear), and agree on the common boundary points c_0, c_1, d_1, \ldots by definition.

iv. f is continuous since each of its coordinate functions are continuous. Let $(x, y) \in [0, 1]^2$. Then there decimal expansions for x and y of the form $x = 0.a_1a_2...$ and $y = 0.b_1b_2...$ (we use 1 = 0.99... if necessary). Thus

$$(x, y) = f(0.a_1b_10a_2b_20...),$$

and so f is surjective.

(b) Denote

$$L := \sup\left\{\frac{|f(x) - f(y)|}{|x - y|} \colon x, y \in [0, 1], \ x \neq y\right\}.$$

Observe that for any $x, y \in [0, 1]$, we have $|f(x) - f(y)| \leq L|x - y|$. In particular, for $\delta > 0$ if $B \subset \mathbb{R}^2$ is an open square with center x and sidelength $2L\delta$, then $f(y) \in B$ for all $y \in [0, 1]$ satisfying $|x - y| < \delta$.

Now, let $\epsilon > 0$. Let $0 < \delta < \min\{\frac{\epsilon}{12L^2}, 1\}$ and let $N \in \mathbb{N}$ be such that $1 \le \delta N$ and $\delta(N+1) \le 3$. Set $x_0 = 0$ and $x_n = \max\{x_0 + \delta n, 1\}$ for $n = 1, \ldots, N$. Then

$$[0,1] \subset \bigcup_{n=0}^{N} (x_n - \delta, x_n + \delta).$$

Consequently, if we let B_n be the open square with center $f(x_n)$ and sidelength $2L\delta$, then

$$f([0,1]) \subset \bigcup_{n=0}^{N} B_n$$

We have

$$\sum_{n=0}^{N} |B_n| = \sum_{n=0}^{N} 4L^2 \delta^2 = 4(N+1)L^2 \delta^2 \le 12L^2 \delta < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, we have that f([0, 1]) is a zero set.

- (c) By part (c), it suffices to show that f is Lipschitz. Since f is smooth, Df is continuous. Then Df is bounded on [0, 1] since it is a compact set. Thus by the Mean Value Theorem we see that f is Lipschitz.
- 4. (a) g is clearly smooth on $\mathbb{R} \setminus \{0\}$, so it suffices to check smoothness at 0. Note that by the chain rule and product rule, for any $n \in \mathbb{N}$ and t > 0 $g^{(n)}(t) = p(\frac{1}{t})e^{-1/t}$ where p is some polynomial. Since $e^{-1/t}$ tends to zero as $t \to 0$ faster than any polynomial, we have that

$$\lim_{x \to 0^+} \frac{g^{(n)}(t) - g^{(n)}(0)}{t - 0} = \lim_{x \to 0^+} \frac{p(\frac{1}{t})e^{-1/t}}{t} = \lim_{x \to 0^+} \frac{1}{t}p(\frac{1}{t})e^{-1/t} = 0,$$

which clearly agrees with the left-hand limit. Thus for each $n \in \mathbb{N}$, $g^{(n)}(0) = 0$. In particular, g is smooth.

(b) Since g(t) = 0 for $t \le 0$, we have that f(t) = 0. For 0 < t < 1 we have g(t), h(t) > 0 and so

$$0 < \frac{g(t)}{g(t) + h(t)} < \frac{g(t)}{g(t)} = 1.$$

For $t \ge 1$ we have h(t) = g(1-t) = 0 so that

$$f(t) = \frac{g(t)}{g(t)} = 1.$$

Finally, f is smooth since g and g + h are smooth and g + h > 0.

(c) We first note that

$$\mathbb{R} \ni t \mapsto \frac{f(\sqrt{|t|})}{\sqrt{|t|}}$$

is smooth. Indeed, for $t \neq 0$ this is clear, and for t = 0 it follows from the fact that g and hence f decays exponentially. By the product rule, $|\psi(u)|^2 = \langle \psi(u), \psi(u) \rangle$ is smooth and thus

$$\frac{f(|\psi(u)|}{|\psi(u)|} = \frac{\sqrt{|\psi(u)|^2}}{\sqrt{|\psi(u)|^2}},$$

is smooth by the chain rule. Another application of the product rule yields that φ is smooth and hence a 2-cell in \mathbb{R}^2 .

To see that φ has the claimed image, first note that $f|_{[0,1]}$ is onto [0,1] by the intermediate value theorem. Let $v \in \mathbb{R}^2$ satisfy $|v| \leq 1$, and let $s \in [0,1]$ be such that f(s) = |v|. Then for $w = \frac{sv}{|v|}$, |w| = s and so

$$\frac{f(|w|)}{|w|}w = \frac{f(s)}{s}\frac{sv}{|v|} = |v|\frac{v}{|v|} = v.$$

Since ψ is onto $[-1,1]^2$, there exists $u \in [0,1]^2$ such that $\psi(u) = w$ and so φ has the claimed image.

(d) We first compute the dipoles

$$\begin{split} \delta^{1}\varphi(t) &= \varphi(1,t) - \varphi(0,t) = \frac{f(|(1,2t-1)|)}{|(1,2t-1)|} (1,2t-1) - \frac{f(|(-1,2t-1)|)}{|-1,2t-1|} (-1,2t-1) \\ &= \frac{f(\sqrt{1+(2t-1)^{2}})}{|(1,2t-1)|} (1,2t-1) - \frac{f(\sqrt{1+(2t-1)^{2}})}{|(-1,2t-1)|} (-1,2t-1) \\ &= \frac{(1,2t-1)}{|(1,2t-1)|} - \frac{(-1,2t-1)}{|(-1,2t-1)|} \end{split}$$

Similarly

$$\delta^2 \varphi(t) = \frac{(2t-1,1)}{|(2t-1,1)|} - \frac{(2t-1,-1)}{|(2t-1,-1)|}$$

Thus

$$\partial \varphi(t) = \frac{(1,2t-1)}{|(1,2t-1)|} - \frac{(-1,2t-1)}{|(-1,2t-1)|} - \frac{(2t-1,1)}{|(2t-1,1)|} + \frac{(2t-1,-1)}{|(2t-1,-1)|}$$

Observe that each 1-cell in this 1-chain consists of units vectors. Hence the image $\partial \varphi$ is the set $\{v \in \mathbb{R}^2 : |v| = 1\}$. To be more precise, the first term travels from (1, -1) to (1, 1) counterclockwise around the unit circle, the second term travels from (-1, 1) to (-1, -1), the third term from (1, 1) to (-1, 1), and the fourth term from (-1, -1) to (1, -1).